Descent sets of cyclic permutations

Sergi Elizalde

Dartmouth College

Sergi Elizalde Descent sets of cyclic permutations

→ 同 → → 三 →

< ≣⇒

Shifts N(Main result Ex

Shifts

 $\mathcal{W}_N = \{0, 1, \dots, N{-}1\}^{\mathbb{N}}$ (infinite words on N letters)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Shifts $N(\pi)$ Main result Example

 $\mathcal{W}_N = \{0, 1, \dots, N{-}1\}^{\mathbb{N}}$ (infinite words on N letters)

(ロ) (四) (E) (E) (E)

Shifts $N(\pi)$ Main resultExample

Shifts

 $\mathcal{W}_N = \{0, 1, \dots, N-1\}^{\mathbb{N}}$ (infinite words on N letters)

The permutation 4217536 can be *realized* by the shift on 3 letters, because taking $w = 2102212210 \dots \in W_3$,

$$w = 2102212210 \dots 4$$

$$\Sigma(w) = 102212210 \dots 2$$

$$\Sigma^{2}(w) = 02212210 \dots 1$$

$$\Sigma^{3}(w) = 2212210 \dots 7$$

$$\Sigma^{4}(w) = 212210 \dots 5$$

$$\Sigma^{5}(w) = 12210 \dots 3$$

$$\Sigma^{6}(w) = 2210 \dots 6$$

(1日) (日) (日)

2

For $\pi \in \mathcal{S}_n$, let

 $N(\pi) = \min\{N : \pi \text{ can be realized with } N \text{ letters}\}.$

• 3 >

For $\pi \in \mathcal{S}_n$, let

 $N(\pi) = \min\{N : \pi \text{ can be realized with } N \text{ letters}\}.$

Known facts about $N(\pi)$:

• If $\pi \in S_n$, then $N(\pi) \leq n-1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

For $\pi \in \mathcal{S}_n$, let

 $N(\pi) = \min\{N : \pi \text{ can be realized with } N \text{ letters}\}.$

Known facts about $N(\pi)$:

• If
$$\pi \in S_n$$
, then $N(\pi) \leq n-1$.

• There are 6 permutations $\pi \in S_n$ with $N(\pi) = n - 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

For $\pi \in \mathcal{S}_n$, let

 $N(\pi) = \min\{N : \pi \text{ can be realized with } N \text{ letters}\}.$

Known facts about $N(\pi)$:

• If
$$\pi \in S_n$$
, then $N(\pi) \leq n-1$.

• There are 6 permutations $\pi \in S_n$ with $N(\pi) = n - 1$.

For example, the permutations in S_6 that require 5 letters are 615243, 324156, 342516, 162534, 453621, 435261.

・ 同 ト ・ ヨ ト ・ ヨ ト

For $\pi \in \mathcal{S}_n$, let

 $N(\pi) = \min\{N : \pi \text{ can be realized with } N \text{ letters}\}.$

Known facts about $N(\pi)$:

• If
$$\pi \in S_n$$
, then $N(\pi) \leq n-1$.

• There are 6 permutations $\pi \in S_n$ with $N(\pi) = n - 1$.

For example, the permutations in S_6 that require 5 letters are 615243, 324156, 342516, 162534, 453621, 435261.

• $N(\pi)$ is related to the number of descents of the cycle $(\pi_1, \pi_2, \ldots, \pi_n)$.

 $N(\pi)$ Example

Computation of $N(\pi)$

Let $\hat{\pi}$ be the cycle $(\pi_1, \pi_2, \dots, \pi_n)$ with the entry π_1 replaced with \star .

Example

 $\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 536174 \star 92 = \hat{\pi}$

 $des(536174 \pm 92) = 4$

(日) (同) (E) (E) (E)

N(π) Example

Computation of $N(\pi)$

Let $\hat{\pi}$ be the cycle $(\pi_1, \pi_2, \dots, \pi_n)$ with the entry π_1 replaced with \star .

Example

 $\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 536174 \star 92 = \hat{\pi}$

 $des(536174 \pm 92) = 4$

Theorem

 $N(\pi) = 1 + \operatorname{des}(\hat{\pi})$

 $N(\pi)$ Example

Computation of $N(\pi)$

Let $\hat{\pi}$ be the cycle $(\pi_1, \pi_2, \dots, \pi_n)$ with the entry π_1 replaced with \star .

Example

 $\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 536174 \star 92 = \hat{\pi}$

 $des(536174 \star 92) = 4$

Theorem

 $N(\pi) = 1 + \operatorname{des}(\hat{\pi}) \ [+1 \text{ in some cases }].$

N(π) Example

Computation of $N(\pi)$

Let $\hat{\pi}$ be the cycle $(\pi_1, \pi_2, \dots, \pi_n)$ with the entry π_1 replaced with \star .

Example

 $\pi = \texttt{892364157} \rightsquigarrow (\texttt{8},\texttt{9},\texttt{2},\texttt{3},\texttt{6},\texttt{4},\texttt{1},\texttt{5},\texttt{7}) \rightsquigarrow \texttt{536174892} \rightsquigarrow \texttt{536174} \star \texttt{92} = \hat{\pi}$

 $des(536174 \pm 92) = 4$

Theorem

$$\mathsf{N}(\pi) = 1 + \mathsf{des}(\hat{\pi}) \;\; [+1 \; \textit{in some cases} \;].$$

So I became interested in the distribution of descent sets in cyclic permutations.

(本間) (本語) (本語) (語)

 $N(\pi)$ Example

Descent sets of 5-cycles

\mathcal{C}_5	
$(1, 2, 3, 4, 5) = 2345 \cdot 1$	
(2,1,3,4,5) = 3.145.2	
$(3, 2, 1, 4, 5) = 4 \cdot 125 \cdot 3$	
$(4, 3, 2, 1, 5) = 5 \cdot 1234$	
$(1,3,2,4,5) = 34 \cdot 25 \cdot 1$	
$(1, 4, 3, 2, 5) = 45 \cdot 23 \cdot 1$	
$(3, 1, 2, 4, 5) = 24 \cdot 15 \cdot 3$	
$(3, 1, 4, 2, 5) = 45 \cdot 123$	
$(4, 3, 1, 2, 5) = 25 \cdot 134$	
$(1, 2, 4, 3, 5) = 245 \cdot 3 \cdot 1$	
$(2, 4, 1, 3, 5) = 345 \cdot 12$	
$(4, 1, 2, 3, 5) = 235 \cdot 14$	

\mathcal{C}_5	
$(2,3,1,4,5) = 4 \cdot 3 \cdot 15 \cdot 2$	
$(2,4,3,1,5) = 5 \cdot 4 \cdot 13 \cdot 2$	
$(4, 2, 3, 1, 5) = 5 \cdot 3 \cdot 124$	
$(1, 4, 2, 3, 5) = 4 \cdot 35 \cdot 2 \cdot 1$	
$(2, 1, 4, 3, 5) = 4 \cdot 15 \cdot 3 \cdot 2$	
$(2,3,4,1,5) = 5 \cdot 34 \cdot 12$	
$(3, 4, 2, 1, 5) = 5 \cdot 14 \cdot 23$	
(4, 2, 1, 3, 5) = 3.15.24	
$(1,3,4,2,5) = 35 \cdot 4 \cdot 2 \cdot 1$	
$(3, 4, 1, 2, 5) = 25 \cdot 4 \cdot 13$	
$(4, 1, 3, 2, 5) = 35 \cdot 2 \cdot 14$	
$(3, 2, 4, 1, 5) = 5 \cdot 4 \cdot 2 \cdot 13$	

æ

 $N(\pi)$ Example

Descent sets of 5-cycles

\mathcal{C}_5	\mathcal{S}_4
$(1, 2, 3, 4, 5) = 2345 \cdot 1$	1234
(2,1,3,4,5) = 3.145.2	2.134
$(3,2,1,4,5) = 4 \cdot 125 \cdot 3$	3.124
$(4, 3, 2, 1, 5) = 5 \cdot 1234$	4.123
$(1,3,2,4,5) = 34 \cdot 25 \cdot 1$	13.24
$(1, 4, 3, 2, 5) = 45 \cdot 23 \cdot 1$	14.23
$(3, 1, 2, 4, 5) = 24 \cdot 15 \cdot 3$	23.14
$(3, 1, 4, 2, 5) = 45 \cdot 123$	34.12
$(4, 3, 1, 2, 5) = 25 \cdot 134$	24.13
$(1, 2, 4, 3, 5) = 245 \cdot 3 \cdot 1$	124.3
$(2, 4, 1, 3, 5) = 345 \cdot 12$	134.2
$(4, 1, 2, 3, 5) = 235 \cdot 14$	234.1

\mathcal{C}_5	\mathcal{S}_4
$(2,3,1,4,5) = 4 \cdot 3 \cdot 15 \cdot 2$	3.2.14
$(2,4,3,1,5) = 5 \cdot 4 \cdot 13 \cdot 2$	4.2.13
$(4, 2, 3, 1, 5) = 5 \cdot 3 \cdot 124$	4.3.12
(1, 4, 2, 3, 5) = 4.35.2.1	3.24.1
$(2,1,4,3,5) = 4 \cdot 15 \cdot 3 \cdot 2$	2.14.3
$(2,3,4,1,5) = 5 \cdot 34 \cdot 12$	4.23.1
$(3, 4, 2, 1, 5) = 5 \cdot 14 \cdot 23$	4.13.2
(4, 2, 1, 3, 5) = 3.15.24	3.14.2
$(1,3,4,2,5) = 35 \cdot 4 \cdot 2 \cdot 1$	14.3.2
$(3, 4, 1, 2, 5) = 25 \cdot 4 \cdot 13$	24.3.1
$(4, 1, 3, 2, 5) = 35 \cdot 2 \cdot 14$	34.2.1
$(3, 2, 4, 1, 5) = 5 \cdot 4 \cdot 2 \cdot 13$	4.3.2.1

æ

Main theorem

Let
$$D(\pi) = \{i : 1 \le i \le n-1, \pi(i) > \pi(i+1)\}.$$

Theorem

For every n there is a bijection $\varphi : C_{n+1} \to S_n$ such that if $\pi \in C_{n+1}$ and $\sigma = \varphi(\pi)$, then

$$D(\pi) \cap [n-1] = D(\sigma).$$

(4回) (4回) (4回)

æ

Given $\pi \in \mathcal{C}_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) \in \mathcal{C}_{21}$

< □ > < □ > < □ > □ □

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. First step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

This map $\pi \mapsto \sigma$ is a bijection

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. First step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

This map $\pi \mapsto \sigma$ is a bijection, but unfortunately it does not always preserve the descent set:

$$\pi(7) = 16 > \pi(8) = 13$$
 but $\sigma(7) = 11 < \sigma(8) = 13$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. First step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, \underline{1, 7}, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

This map $\pi \mapsto \sigma$ is a bijection, but unfortunately it does not always preserve the descent set:

 $\pi(7) = 16 > \pi(8) = 13$ but $\sigma(7) = 11 < \sigma(8) = 13$.

We say that the pair $\{7, 8\}$ is *bad*. We will fix the bad pairs.

(ロ) (同) (目) (日) (日) (の)

The bijection

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$

· < @ > < 문 > < 문 > · · 문

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

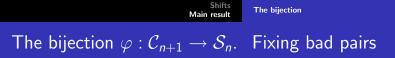
For each but the last cycle of σ , from left to right:

- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$

· < @ > < 글 > < 글 > · · 글

z := rightmost entry of the cycle.

- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$
- z := 7.



z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.

$$\begin{aligned} \pi &= (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) \\ \sigma &= (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, \underline{6}, 14, 18, 8, 13, 19, 15, 17) \\ \{7, 6\} \text{ and } \{7, 8\} \text{ are bad; and } \sigma(6) = 14 > 13 = \sigma(8) \Rightarrow \varepsilon := -1. \end{aligned}$$

▲圖▶ ▲屋▶ ▲屋▶ ---

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as {z, z+ε} is bad:
 1. Switch z and z+ε (in the cycle form of σ).

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$

z := 7. $\varepsilon := -1$. Switch 7 and 6.

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as {z, z+ε} is bad:
 1. Switch z and z+ε (in the cycle form of σ).

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 6)(16, 9, 3, 5, 12)(20, 2, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. $\varepsilon := -1$. Switch 7 and 6.

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 10, 1, 6)(16, 9, 3, 5, 12)(20, 2, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. Switch 7 and 6. Switch 1 and 2.

$$\varepsilon := -1.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. Switch 7 and 6. Switch 1 and 2.

$$\varepsilon := -1.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, \underline{10}, 2, 6)(16, 9, 3, 5, 12)(\underline{20}, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. Switch 7 and 6. Switch 1 and 2.

$$\varepsilon := -1.$$

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- $z := 6. \qquad \qquad \varepsilon := -1.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 6. {6,5} is bad. $\varepsilon := -1.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 6. $\varepsilon := -1.$ Switch 6 and 5.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 5)(16, 9, 3, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 6. $\varepsilon := -1.$ Switch 6 and 5.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 5)(16, 9, 3, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 6. Switch 6 and 5. Switch 2 and 3.

$$\varepsilon := -1.$$

(日) (四) (王) (王) (王)

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 3, 5)(16, 9, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 6. Switch 6 and 5. Switch 2 and 3.

$$s := -1.$$

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 3, 5)(16, 9, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 6. $\varepsilon := -1$. Switch 6 and 5. Switch 2 and 3. Switch 10 and 9.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, \underline{4}, 9, 3, 5)(\underline{16}, \underline{10}, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 6. $\varepsilon := -1$. Switch 6 and 5. Switch 2 and 3. Switch 10 and 9.

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- $z := 5. \qquad \qquad \varepsilon := -1.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 5. {5,4} is OK, so we move on to the second cycle.

(ロ) (同) (目) (日) (日) (の)

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle.If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 12.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle.If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 12. {12, 11} is OK but {12, 13} is bad $\Rightarrow \varepsilon := 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 12. $\varepsilon := 1$. Switch 12 and 13.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, \frac{12}{19}, 15, 17)$

z := 12. $\varepsilon := 1.$ Switch 12 and 13.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, \underline{6}, 13)(20, 1, 7, 14, 18, \underline{8}, 12, 19, 15, 17)$

z := 12. $\varepsilon := 1.$ Switch 12 and 13.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$
- z := 13.

$$\varepsilon := 1.$$

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$
- z := 13. {13, 14} is bad. $\varepsilon := 1.$

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$

z := 13. $\varepsilon := 1.$ Switch 13 and 14.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 14)(20, 1, 7, 13, 18, 8, 12, 19, 15, 17)$

z := 13. $\varepsilon := 1.$ Switch 13 and 14.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 14)(20, 1, 7, 13, 18, 8, 12, 19, 15, 17)$

z := 13. $\varepsilon := 1.$ Switch 13 and 14. Switch 6 and 7.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 7, 14)(20, 1, 6, 13, 18, 8, 12, 19, 15, 17)$

z := 13. $\varepsilon := 1.$ Switch 13 and 14. Switch 6 and 7.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 7, 14)(20, 1, 6, 13, 18, 8, 12, 19, 15, 17)$
- z:= 13. $\varepsilon:=$ 1. Switch 13 and 14. Switch 6 and 7. Switch 2 and 1.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, \underline{10}, 1, 7, 14)(\underline{20}, 2, 6, 13, 18, 8, 12, 19, 15, 17)$
- z:= 13. $\varepsilon:=$ 1. Switch 13 and 14. Switch 6 and 7. Switch 2 and 1.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)$

z := 14. $\varepsilon := 1.$

(ロ) (同) (E) (E) (E)

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)$
- z := 14. {14, 15} is bad. $\varepsilon := 1$.

(日) (四) (王) (王) (王)

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)$

z := 14. $\varepsilon := 1.$ Switch 14 and 15.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$

z := 14. $\varepsilon := 1.$ Switch 14 and 15.

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, \underline{7}, 15)(20, 2, 6, 13, 18, 8, 12, \underline{19}, 14, 17)$

z := 14. $\varepsilon := 1.$ Switch 14 and 15.

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$

z := 15.

 $\varepsilon := 1.$

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$
- z := 15. {15, 16} is OK, so we are done.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\varphi(\pi) = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$ Define $\varphi(\pi) = \sigma$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

The descent sets are preserved

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

$$\varphi(\pi) = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$$

In one-line notation,

 $\begin{array}{rcl} \pi & = & 7 \cdot 6 \cdot 5 \, \, 10 \, \, 12 \, \, 14 \, \, 16 \cdot 13 \cdot 3 \cdot 1 \, \, 4 \, \, 20 \cdot 19 \cdot 18 \cdot 16 \cdot \, 9 \, \, 21 \cdot 8 \, \, 15 \cdot 2 \, \, 11 \\ \varphi(\pi) & = & 7 \cdot 6 \cdot 5 \, \, 9 \, \, 11 \, \, 13 \, \, 15 \cdot 12 \cdot 3 \cdot 1 \, \, 4 \, \, 19 \cdot 18 \cdot 17 \cdot 16 \cdot 10 \, \, 20 \cdot 8 \, \, 14 \cdot 2 \end{array}$

・ 回 と ・ ヨ と ・ ヨ と

3

Eighth International Conference on **Permutation Patterns**, *PP 2010*

August 9-13, Dartmouth College, Hanover, NH

Invited speakers:

- Nik Ruškuc, University of St Andrews
- Richard Stanley, MIT

Deadline for submission of abstracts: June 1 Deadline for early registration: June 15

http://math.dartmouth.edu/~pp2010

・ 同 ト ・ ヨ ト ・ ヨ ト

