Experimental Techniques Applied to Convergence of Rational Difference Equations

Emilie Hogan
eahogan@math.rutgers.edu
Rutgers University
Joint with Doron Zeilberger

May 27, 2010

Introduction

Goal: describe the limiting behavior of a sequence, $\left\{x_{n}\right\}_{n=-k}^{\infty}$, produced by a rational difference equation

$$
x_{n+1}=R\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)
$$

with

- arbitrary positive initial conditions, x_{-k}, \ldots, x_{0}, and
- R a rational function with numerator and denominator linear in $\left\{x_{n}, \ldots, x_{n-k}\right\}$, and all coefficients positive.

Introduction

Goal: describe the limiting behavior of a sequence, $\left\{x_{n}\right\}_{n=-k}^{\infty}$, produced by a rational difference equation

$$
x_{n+1}=R\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)
$$

with

- arbitrary positive initial conditions, x_{-k}, \ldots, x_{0}, and
- R a rational function with numerator and denominator linear in $\left\{x_{n}, \ldots, x_{n-k}\right\}$, and all coefficients positive.
For example

$$
x_{n+1}=\frac{1}{\frac{9}{20}+x_{n}}
$$

Convergence

If $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is going to converge, it will be to an equilibrium point, \bar{x}, where \bar{x} is a positive solution to

$$
\bar{x}=R(\bar{x}, \bar{x}, \ldots, \bar{x}) .
$$

Convergence

If $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is going to converge, it will be to an equilibrium point, \bar{x}, where \bar{x} is a positive solution to

$$
\bar{x}=R(\bar{x}, \bar{x}, \ldots, \bar{x}) .
$$

For example

$$
\bar{x}=\frac{1}{\frac{9}{20}+\bar{x}}, \Longrightarrow \bar{x}=\frac{4}{5} \text { or }-\frac{5}{4}
$$

Convergence

If $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is going to converge, it will be to an equilibrium point, \bar{x}, where \bar{x} is a positive solution to

$$
\bar{x}=R(\bar{x}, \bar{x}, \ldots, \bar{x}) .
$$

For example

$$
\bar{x}=\frac{1}{\frac{9}{20}+\bar{x}}, \Longrightarrow \bar{x}=\frac{4}{5} \text { or }-\frac{5}{4}
$$

There are two general types of convergence that people are interested in.
(1) (Local Asymptotic Stability) Given any initial conditions in some region "close" to \bar{x} we have $x_{n} \rightarrow \bar{x}$.
(2) (Global Asymptotic Stability) Given any positive initial conditions we have $x_{n} \rightarrow \bar{x}$.

Method - Step 1 ("Move" the equilibrium from \bar{x} to 0)

Let $z_{n}=x_{n}-\bar{x}$, and substitute into $x_{n+1}=R\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)$

$$
\begin{aligned}
& z_{n+1}=R\left(z_{n}+\bar{x}, z_{n-1}+\bar{x}, \ldots, z_{n-k}+\bar{x}\right)-\bar{x} \\
& z_{n+1}=R_{0}\left(z_{n}, z_{n-1}, \ldots, z_{n-k}\right)
\end{aligned}
$$

(Note that now we require initial conditions to be all greater than $-\bar{x}$. Call such initial conditions admissible.)

Method - Step 1 ("Move" the equilibrium from \bar{x} to 0)

Let $z_{n}=x_{n}-\bar{x}$, and substitute into $x_{n+1}=R\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)$

$$
\begin{aligned}
& z_{n+1}=R\left(z_{n}+\bar{x}, z_{n-1}+\bar{x}, \ldots, z_{n-k}+\bar{x}\right)-\bar{x} \\
& z_{n+1}=R_{0}\left(z_{n}, z_{n-1}, \ldots, z_{n-k}\right)
\end{aligned}
$$

(Note that now we require initial conditions to be all greater than $-\bar{x}$. Call such initial conditions admissible.) For example,

$$
\begin{aligned}
x_{n+1} & =\frac{1}{\frac{9}{20}+x_{n}} \\
z_{n+1} & =\frac{1}{\frac{9}{20}+\left(z_{n}+\frac{4}{5}\right)}-\frac{4}{5} \\
z_{n+1} & =-\frac{16}{5} \cdot \frac{z_{n}}{5+4 z_{n}}
\end{aligned}
$$

Method - Step 2 ("Moving window" map)

Consider the map $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$, where

$$
Q\left(\left\langle z_{n-k}, z_{n-k+1}, \ldots, z_{n}\right\rangle\right)=\left\langle z_{n-k+1}, \ldots, z_{n}, R_{0}\left(z_{n}, \ldots, z_{n-k}\right)\right\rangle
$$

Think of this as a "moving window" on the sequence $\left\{z_{n}\right\}_{n=-k}^{\infty}$. Let

$$
\mathcal{Z}_{n}:=\left\langle z_{n-k}, \ldots, z_{n}\right\rangle
$$

then $\mathcal{Z}_{n}=Q^{n}\left(\mathcal{Z}_{0}\right)$ where $\mathcal{Z}_{0}=\left\langle z_{-k}, \ldots, z_{0}\right\rangle$ is the vector of initial conditions.

Method - Step 2 ("Moving window" map)

Consider the map $Q: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$, where

$$
Q\left(\left\langle z_{n-k}, z_{n-k+1}, \ldots, z_{n}\right\rangle\right)=\left\langle z_{n-k+1}, \ldots, z_{n}, R_{0}\left(z_{n}, \ldots, z_{n-k}\right)\right\rangle
$$

Think of this as a "moving window" on the sequence $\left\{z_{n}\right\}_{n=-k}^{\infty}$. Let

$$
\mathcal{Z}_{n}:=\left\langle z_{n-k}, \ldots, z_{n}\right\rangle
$$

then $\mathcal{Z}_{n}=Q^{n}\left(\mathcal{Z}_{0}\right)$ where $\mathcal{Z}_{0}=\left\langle z_{-k}, \ldots, z_{0}\right\rangle$ is the vector of initial conditions.
Global asymptotic stability (GAS) can now be stated as:

$$
\lim _{n \rightarrow \infty} \mathcal{Z}_{n}=\lim _{n \rightarrow \infty} Q^{n}\left(\mathcal{Z}_{0}\right)=\langle 0, \ldots, 0\rangle=: \overline{0}
$$

for any admissible initial conditions \mathcal{Z}_{0}.

Method - Step 3 (Find a K)

Claim

If there exists a $K \in \mathbb{Z}_{>0}$ and a $0<\delta<1$ such that

$$
\frac{\left|Q^{K}\left(\left\langle z_{1}, \ldots, z_{k+1}\right\rangle\right)\right|}{\left|\left\langle z_{1}, \ldots, z_{k+1}\right\rangle\right|}<\delta
$$

for any admissible $\left\langle z_{1}, \ldots, z_{k+1}\right\rangle$ then

$$
\lim _{n \rightarrow \infty} Q^{n}\left(\mathcal{Z}_{0}\right)=\overline{0}
$$

as long as the initial conditions, \mathcal{Z}_{0}, are admissible.
Note, $|\cdot|$ is the Euclidean norm.

Why this works $\quad\left(\frac{\left|Q^{K}\left(\left\langle z_{1}, \ldots, z_{k+1}\right)\right)\right|}{\left|\left\langle z_{1}, \ldots, z_{k+1}\right\rangle\right|}<\delta\right)$

Consider the first K iterations of Q

$$
\begin{aligned}
\mathcal{Z}_{0} & =\left\langle z_{-k}, \ldots, z_{0}\right\rangle \\
& \vdots \\
\mathcal{Z}_{K-1} & =\left\langle z_{-k+(K-1)}, \ldots, z_{K-1}\right\rangle
\end{aligned}
$$

Let $\mathcal{Z}:=\max _{0 \leq i \leq K-1}\left|\mathcal{Z}_{i}\right|$.

Why this works $\quad\left(\frac{\left|Q^{\kappa}\left(\left\langle z_{1}, \ldots, z_{k+1}\right)\right)\right|}{\left|\left\langle z_{1}, \ldots, z_{k+1}\right)\right|}<\delta\right)$

Consider the first K iterations of Q

$$
\begin{aligned}
\mathcal{Z}_{0} & =\left\langle z_{-k}, \ldots, z_{0}\right\rangle \\
& \vdots \\
\mathcal{Z}_{K-1} & =\left\langle z_{-k+(K-1)}, \ldots, z_{K-1}\right\rangle
\end{aligned}
$$

Let $\mathcal{Z}:=\max _{0 \leq i \leq K-1}\left|\mathcal{Z}_{i}\right|$. If the conditions of the claim are satisfied:

$$
\left|\left(Q^{K}\right)^{N}\left(\mathcal{Z}_{i}\right)\right|<\delta^{N}\left|\mathcal{Z}_{i}\right| \leq \delta^{N} \mathcal{Z}
$$

Why this works $\quad\left(\frac{\mid Q^{\kappa}\left(\left\langle z_{1}, \ldots, z_{k+1}\right) \mid\right.}{\left|\left(z_{1}, \ldots, z_{k+1}\right)\right|}<\delta\right)$

Consider the first K iterations of Q

$$
\begin{aligned}
\mathcal{Z}_{0} & =\left\langle z_{-k}, \ldots, z_{0}\right\rangle \\
& \vdots \\
\mathcal{Z}_{K-1} & =\left\langle z_{-k+(K-1)}, \ldots, z_{K-1}\right\rangle
\end{aligned}
$$

Let $\mathcal{Z}:=\max _{0 \leq i \leq K-1}\left|\mathcal{Z}_{i}\right|$. If the conditions of the claim are satisfied:

$$
\left|Q^{N K+i}\left(\mathcal{Z}_{0}\right)\right|=\left|\left(Q^{K}\right)^{N}\left(\mathcal{Z}_{i}\right)\right|<\delta^{N}\left|\mathcal{Z}_{i}\right| \leq \delta^{N} \mathcal{Z}
$$

and since $\delta<1$ the RHS goes to 0 as N goes to ∞.

Example

Consider our running example,

$$
x_{n+1}=\frac{1}{\frac{9}{20}+x_{n}} \longleftrightarrow z_{n+1}=-\frac{16}{5} \cdot \frac{z_{n}}{5+4 z_{n}}
$$

where $\bar{x}=\frac{4}{5}$.

Example

Consider our running example,

$$
x_{n+1}=\frac{1}{\frac{9}{20}+x_{n}} \longleftrightarrow z_{n+1}=-\frac{16}{5} \cdot \frac{z_{n}}{5+4 z_{n}}
$$

where $\bar{x}=\frac{4}{5}$. I claim that $K=2$ will work. If

$$
\max _{z_{1}>-4 / 5} \frac{\left|Q^{2}\left(z_{1}\right)\right|}{\left|z_{1}\right|}=\delta<1
$$

then we're done.

Example (cont.)

$$
Q^{2}\left(z_{1}\right)=\frac{256}{5} \cdot \frac{z_{1}}{125+36 z_{1}}
$$

Example (cont.)

$$
\begin{aligned}
Q^{2}\left(z_{1}\right) & =\frac{256}{5} \cdot \frac{z_{1}}{125+36 z_{1}} \\
\frac{\left|Q^{2}\left(z_{1}\right)\right|}{\left|z_{1}\right|} & =\frac{\frac{256}{5} \cdot \frac{\left|z_{1}\right|}{\left|125+36 z_{1}\right|}}{\left|z_{1}\right|} \\
& =\frac{256}{5} \cdot \frac{1}{\left|125+36 z_{1}\right|} \\
& <\frac{256}{5} \cdot \frac{1}{481 / 5} \\
& =\frac{256}{481}<1
\end{aligned}
$$

* If $z_{1}>-4 / 5$.

Example (cont.)

$$
\begin{aligned}
Q^{2}\left(z_{1}\right) & =\frac{256}{5} \cdot \frac{z_{1}}{125+36 z_{1}} \\
\frac{\left|Q^{2}\left(z_{1}\right)\right|}{\left|z_{1}\right|} & =\frac{\frac{256}{5} \cdot \frac{\left|z_{1}\right|}{\left|125+36 z_{1}\right|}}{\left|z_{1}\right|} \\
& =\frac{256}{5} \cdot \frac{1}{\left|125+36 z_{1}\right|} \\
& <\frac{256}{5} \cdot \frac{1}{481 / 5} \\
& =\frac{256}{481}<1
\end{aligned}
$$

* If $z_{1}>-4 / 5$.

Therefore, the rational difference equation $x_{n+1}=\frac{1}{9 / 20+x_{n}}$ is globally asymptotically stable.

Remarks

- Most questions in this subject deal with, e.g.,

$$
x_{n+1}=\frac{1}{A+x_{n}}, \text { or } x_{n+1}=\frac{\alpha+x_{n}}{A+x_{n-1}}
$$

finding values for the parameters that guarantee types of convergence

Remarks

- Most questions in this subject deal with, e.g.,

$$
x_{n+1}=\frac{1}{A+x_{n}}, \text { or } x_{n+1}=\frac{\alpha+x_{n}}{A+x_{n-1}}
$$

finding values for the parameters that guarantee types of convergence

- Currently our approach only deals with the case when the parameters assume specific values.

Remarks

- Most questions in this subject deal with, e.g.,

$$
x_{n+1}=\frac{1}{A+x_{n}}, \text { or } x_{n+1}=\frac{\alpha+x_{n}}{A+x_{n-1}}
$$

finding values for the parameters that guarantee types of convergence

- Currently our approach only deals with the case when the parameters assume specific values.
- Our approach boils down to showing that the maximum of some rational function is less than 1.

Remarks

- Most questions in this subject deal with, e.g.,

$$
x_{n+1}=\frac{1}{A+x_{n}}, \text { or } x_{n+1}=\frac{\alpha+x_{n}}{A+x_{n-1}}
$$

finding values for the parameters that guarantee types of convergence

- Currently our approach only deals with the case when the parameters assume specific values.
- Our approach boils down to showing that the maximum of some rational function is less than 1.
- Using Maple to conjecture these K values.

References

國 M.R.S. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman and Hall/CRC press, 2001.
E. Camouzis, G. Ladas, Dynamics of Third Order Rational Difference Equations, Chapman and Hall/CRC press, 2008.

Happy Birthday Dr. Z!

