The Joys of Mathematics

with Doron

David Bressoud
Macalester College
St. Paul, MN

From $A=B$ to $Z=60$
DIMACS
May 28, 2010

$$
\begin{aligned}
& \text { 四 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { the wezmann instrute of science }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dear Pand, } \\
& \text { Thonks a eat for your } \\
& \text { reponts : was particulsly impriseed and } \\
& \text { very much enjozed the eosy pootof ilo } \\
& \text { the } R-R \text { idatifies. } D i d \text { you more } \\
& t_{0}^{-} \text {wisconsin: or ar yon going back to } \\
& \text { Pemstate }=4 \text { ist is a direct continateral } \\
& \text { proty } 80 \text { Correlon } 18(p / 2) \text { in Andrens' took on } \\
& \text { partifion: } \\
& p(m)+p(m \cdot 5)+p(m-7)
\end{aligned}
$$

$$
\begin{aligned}
& \text { a ceraim pentegond partition, } \mid r i+i d=m, \varphi \cdot g \text { if } m=11
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\therefore \text {. Else conse de colest liock } \\
\therefore \text { int int whits }
\end{array} \\
& \therefore 0
\end{aligned}
$$

Euler's Theorem:

$$
\prod_{n=1}^{\infty}\left(1-q^{n}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} q^{3 / k^{2}+1 / 2 k}
$$

Combinatorial interpretation:

There is a simple, bijective proof of this due to Fabian Franklin.

Equivalent Theorem:

$$
1=\frac{1}{\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{k=-\infty}} \sum^{\infty}(-1)^{k} q^{3 / 2 k^{2}+1 / 2 k}
$$

Combinatorial interpretation: For $n \geq 1$ and k in Z,

$$
\sum_{k \text { even }} p\left(n-3 / 2 k^{2}-1 / 2 k\right)=\sum_{k \text { odd }} p\left(n-3 / 2 k^{2}-1 / 2 k\right)
$$

Garsia and Milne had used their involution principle to turn Franklin's proof into a bijection between the two sets represented by the sides of this equality.

Doron's question: Is there a more natural bijection?
$\sum p\left(n-3 / 2 k^{2}-1 / 2 k\right)$
This sum counts pairs (π, k), where π is a partition of $n-3 / 2 k^{2}-1 / 2 k$ and k can be any integer; positive, negative, or zero.
B-Z: Bijecting Euler's Partitions-Recurrence, American Math Monthly, 1985:
$t=\#$ of parts in $\pi, l=$ largest part in π
If $l-\mathrm{t} \leq 3 k$, subtract 1 from each part, construct new largest part of size $t+3 k-1, k$ becomes $k-1$.

If $l-\mathrm{t}>3 k$, remove largest part, add 1 to $l-3 k-2$ parts, some of which may be $0, k$ becomes $k+1$.

Doron's next challenge:

Let's produce a bijective proof of the RogersRamanujan identities.

Garsia and Milne, Method for constructing bijections for classical partition identities, Proc. Nat. Acad. Sci. USA, 1981
——, A Rogers-Ramanujan Bijection, J. Combin. Th. A, 1981.

B., Easy Proof of the Rogers-Ramanujan Identities,

 J. Number Theory, 1983$$
\begin{aligned}
& (-x q ; q)_{s}\left(-x^{-1} ; q\right)_{s}=\sum_{m} x^{m} q^{\left(m^{2}+m\right) / 2}\left[\begin{array}{c}
2 s \\
s-m
\end{array}\right] \\
& \frac{1}{(q ; q)_{n+j}}=\sum_{i \geq 0} \frac{q^{i^{2}+2 i j}}{(q ; q)_{i+2 j}}\left[\begin{array}{c}
n-j \\
i
\end{array}\right] \\
& \quad \Rightarrow \quad \sum_{j} \frac{x^{j} q^{a q^{2}}}{(q ; q)_{n-j}(q ; q)_{n+j}}=\sum_{s \geq 0} \frac{q^{s^{2}}}{(q ; q)_{n-s}} \sum_{j} \frac{x^{j} q^{(a-1) j^{2}}}{(q ; q)_{s-j}(q ; q)_{s+j}},
\end{aligned}
$$

$$
\frac{1}{(q ; q)_{\infty}} \sum_{j} x^{j} q^{q q^{2}}=\sum_{s \geq 0} q^{q^{2}} \sum_{j} \frac{x^{j} q^{(a-1) j^{2}}}{(q ; q)_{s-j}(q ; q)_{s+j}}
$$

$$
\frac{\left(-x q^{3} ; q^{5}\right)_{\infty}\left(-x^{-1} q^{2} ; q^{5}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}}{(q ; q)_{\infty}}=\frac{1}{(q ; q)_{\infty}} \sum_{j} x^{j} q^{\left(5 j^{2}+j\right) / 2}
$$

$$
\begin{aligned}
& \frac{\left(-x q^{3} ; q^{5}\right) .\left(-x^{-1} q^{2} ; q^{5}\right) .\left(q^{5} ; q^{5}\right)}{(q ; q)}=\frac{1}{(q ; q)_{m}} \sum^{\left.x^{5} q^{\left.\left(z^{5}+4\right)\right)^{2}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{z=0} q^{s} \sum_{j} \frac{x^{\prime} q^{\left.\left(j z^{2}+t\right)\right)^{2}}}{\left(q ; q q_{n-1}(q ; q)_{k+j}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\frac{\left(-x q^{3}: q^{5}\right)=\left(-x^{-1} q^{2}: q^{5}\right)}{\left(q ; q q^{5} ; q^{5}\right)}=\frac{1}{(q ; q)_{m}} \sum_{1} x^{\left(q^{(j)}\right.}{ }^{5}\right)\right)^{2} \\
& =\sum_{i=0} q^{3} \sum_{j} \frac{x^{j} q^{\left.\left(z^{i}+i\right)\right)^{2}}}{(q ; q)_{-j=1}(q ; q)_{i+j}} \\
& =\sum_{w=0} \frac{q^{7^{3}+r^{2}}}{(q ; q)} \sum_{i=1} \frac{x^{j} \cdot\left(q^{(2+t))^{2}}\right.}{(q ; q)_{1-j}(q ; q)_{t+j}} \\
& =\sum_{u s=0} \frac{q^{q^{2}+t^{2}}}{(q ; q)_{n-1}(q ; q)_{21}}(-x q ; q)_{t}\left(-x^{-1} ; q\right)
\end{aligned}
$$

Rogers-Ramanujan identities are $x=-1$ and $x=-q$.

B-Z: A Short Rogers-Ramanujan Bijection, Discrete Mathematics, 1983

Generalized Rogers-Ramanujan

Bijections, Advances in Mathematics, 1989

1983: Received preprint of Doron's proof of Andrews' conjecture (a.k.a. q-Dyson),

$$
\text { C.T. } \prod_{1 \leq i<i \leq n}\left(\frac{x_{i}}{x_{j}} ; q\right)_{a_{i}}\left(\frac{x_{j}}{x_{i}} q ; q\right)_{a_{j}}=\frac{(q ; q)_{a_{1}+a_{2}+\cdots+a_{n}}}{(q ; q)_{a_{1}}(q ; q)_{a_{2}} \cdots(q ; q)_{a_{n}}} \text {. }
$$

Basic idea goes back to Ira Gessel's proof of the Vandermonde determinant formula:

$$
\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)=\sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn} \sigma} \prod_{i=1}^{n} x_{i}^{\sigma(i)} .
$$

Interpret LHS as sum over tournaments and find a signreversing involution on non-transitive tournaments.

1982, Doron published proof of Dyson's conjecture based on Ira's idea, Discrete Math:

$$
\text { C.T. } \prod_{1 \leq i, j \leq n}\left(1-\frac{x_{i}}{x_{j}}\right)^{a_{i}}=\binom{a_{1}+\cdots+a_{n}}{a_{1}, \ldots, a_{n}} \text {. }
$$

LHS generates multi-tournaments, i and j play $a_{i}+a_{j}$ games, i wins a total of $(n-1) a_{i}$ games, sign is determined by parity of number of upsets ($i<j$ but j beats i). RHS counts multiwords in a_{1} 1's, a_{2} 2's, \ldots

$$
\text { C.T. } \prod_{1 \leq i<i<j \leq n}\left(\frac{x_{i}}{x_{j}} ; q\right)_{a_{i}}\left(\frac{x_{j}}{x_{i}} q ; q\right)_{a_{j}}=\frac{(q ; q)_{a_{1}+a_{2}+\cdots+a_{n}}}{(q ; q)_{a_{1}}(q ; q)_{a_{2}} \cdots(q ; q)_{a_{n}}} \text {. }
$$

Resulting words on RHS are weighted by Z-statistic. If $W_{i j}$ is the subword in i and j, then

$$
Z(W)=\sum_{i<j} \operatorname{Maj}\left(W_{i j}\right)
$$

$\operatorname{Maj}\left(W_{i j}\right)=\operatorname{sum}$ of position of j 's that are followed by i.

$$
\text { C.T. } \prod_{1 \leq i<i<j \leq n}\left(\frac{x_{i}}{x_{j}} ; q\right)_{a_{i}}\left(\frac{x_{j}}{x_{i}} q ; q\right)_{a_{j}}=\frac{(q ; q)_{a_{1}+a_{2}+\cdots+a_{n}}}{(q ; q)_{a_{1}}(q ; q)_{a_{2}} \cdots(q ; q)_{a_{n}}} \text {. }
$$

Resulting words on RHS are weighted by Z-statistic. If $W_{i j}$ is the subword in i and j, then

$$
Z(W)=\sum_{i<j} \operatorname{Maj}\left(W_{i j}\right)
$$

$\operatorname{Maj}\left(W_{i j}\right)=\operatorname{sum}$ of position of j 's that are followed by i.
The gap lay in the proof that the Z-statistic is Mahonian, that the sum over all words W in $a_{1} 1$'s, a_{2} 2's, \ldots of $q^{Z(W)}$ equals

$$
\frac{(q ; q)_{a_{1}+a_{2}+\cdots+a_{n}}}{(q ; q)_{a_{1}}(q ; q)_{a_{2}} \cdots(q ; q)_{a_{n}}}
$$

Z-B: A Proof of Andrews' q-Dyson Conjecture, Discrete Math, 1985
B. \& Goulden: Constant Term Identities Extending the q Dyson Theorem, Transactions of the AMS, 1985
\qquad : The Generalized Plasma in One Dimension,
Communications in Mathematical Physics, 1987

Gessel \& Xin: A Proof of the Zeilberger-Bressoud q-Dyson Theorem, Proceedings of the AMS, 2006

1980's, Kathy O'Hara announced a somewhat complicated combinatorial proof that the Gaussian polynomial $(q ; q)_{n+j} /(q ; q)_{n}(q ; q)_{j}$ is always unimodal. J. Combinatorial Theory A, 1990.

Doron showed that what Kathy actually proved is that

$$
\begin{aligned}
& {\left[\begin{array}{c}
n+j \\
j
\end{array}\right]=\sum q^{m_{2}^{2}+\cdots+m_{j}^{2}-j} \prod_{i=1}^{j}\left[\begin{array}{c}
(n+2) i-M_{i-1}-M_{i+1} \\
m_{i}-m_{i+1}
\end{array}\right],} \\
& m_{1} \geq \cdots \geq m_{j} \geq m_{j+1}=0, \quad m_{0}=0, \\
& M_{i}=m_{1}+\cdots+m_{i}, \quad M_{j}=j .
\end{aligned}
$$

Unimodality follows by induction using the observation that each summand has the same mode.

B: In the Land of OZ, in q-Series and Partitions, IMA, 1989.

Interpretation and generalization of the O'Hara-Zeilberger identity.

Benjamin, Quinn, Quinn, and Wójs, Composite fermions and integer partitions, J. Combin. Th. A, 2001

Alternating Sign Matrices

$$
\begin{aligned}
& 1 \\
& 11 \\
& \begin{array}{lll}
2 & 3 & 2
\end{array} \\
& \begin{array}{llll}
7 & 14 & 14 & 7
\end{array} \\
& \begin{array}{lllll}
42 & 105 & 135 & 105 & 42
\end{array} \\
& \begin{array}{llllll}
429 & 1287 & 2002 & 2002 & 1287 & 429
\end{array}
\end{aligned}
$$

$A_{n, k}=\#$ of $n \times n$ alternating sign matrices with 1 in row 1, column k.

1

$$
\begin{aligned}
& 12 / 21 \\
& 2 \text { 2/3 } 3 \text { 3/2 } 2 \\
& 7 \text { 2/414 5/5 } 14 \text { 4/27 }
\end{aligned}
$$

42 2/5 105 7/9 135 9/7 105 5/2 42
429 2/6 $12879 / 142002$ 16/16 2002 14/9 1287 6/2 429
Conjecture: $\quad A_{n, k}=\frac{\binom{n-2}{k-1}+\binom{n-1}{k-1}}{\binom{n-2}{n-k-1}+\binom{n-1}{n-k-1}}$

The conjecture about the ratios implies that

$$
A_{n}=\prod_{j=0}^{n-1} \frac{(3 j+1)!}{(n+j)!}=\frac{1!\cdot 4!\cdot 7!\cdots(3 n-2)!}{n!\cdot(n+1)!\cdots(2 n-1)!}
$$

But this was George Andrews' formula for the number of descending plane partitions that fit into an $n \times n \times n$ box.

George's work was inspired by Ian Macdonald's conjectured generating function for cyclically symmetric plane partitions.
"If I had to single out the most interesting open problem in all of enumerative combinatorics, this would be it." Richard Stanley, review of Symmetric Functions and Hall Polynomials, Bulletin of the AMS, March, 1981.

In the attempt to find a connection between descending plane partitions and alternating sign matrices that would prove their conjectures, Mills, Robbins, and Rumsey instead discovered a proof of Macdonald's conjecture.

MRR, Proof of the Macdonald Conjecture, Inv.
Math., 1982

Oberwolfach, 1982:
"Dave's first talk, about the MRR proof of
Macdonald's CSPP conjecture, was so good, and it hinted at the intriguing ASMs, that Dominique [Foata], (and everyone else!) begged Dave to give a second fifty-minute talk, about ASMs and their conjectured enumeration...
"On the way back, I was fortunate to share a train cabin with Dave, and I asked him lots of questions, and thus started my love-hate relationship with the ASM conjecture."

Doron, Dave Robbins' art of guessing,
Advances in Applied Mathematics, 2005

1992: George Andrews proves Robbins conjecture that the number of totally symmetric, selfcomplementary plane partitions in an $n \times n \times n$ box is given by

$$
A_{n}=\prod_{j=0}^{n-1} \frac{(3 j+1)!}{(n+j)!}=\frac{11 \cdot 4!\cdot 7!\cdots(3 n-2)!}{n!\cdot(n+1)!\cdots(2 n-1)!}
$$

Z, Proof of the Alternating Sign Matrix Conjecture, Elect. J. of Combin., 1996.

Greg Kuperberg, Another proof of the alternating sign matrix conjecture, Int. Math. Res. Notices, 1996.

Based on Rodney Baxter's triangle-totriangle relationship, a basic tool of statistical mechanics.

Z., Proof of the refined alternating sign matrix conjecture, New York J. of Math., 1996

Proofs and Confirmations

The Story of the Alternating Sign
Matrix Conjecture

David M. Bressoud

Published jointly by MAA and Cambridge University Press, 1999

Concludes with Doron's brilliant proof of Robbins' original conjecture:

$$
\frac{A_{n, k}}{A_{n, k+1}}=\frac{\binom{n-2}{k-1}+\binom{n-1}{k-1}}{\binom{n-2}{n-k-1}+\binom{n-1}{n-k-1}}
$$

PowerPoint available at www.macalester.edu/~bressoud/talks

