Proof of
 George Andrews' and David Robbins' q-TSPP Conjecture

Christoph Koutschan
(in collaboration with Manuel Kauers and Doron Zeilberger)
Mathematics Department, Tulane University, New Orleans, LA.

From $A=B$ to $Z=60$
Conference in Honor of Doron Zeilberger's 60th Birthday May 27, 2010

q-TSPP

Let $T(n)$ denote set of TSPPs with largest part at most n.

Andrews-Robbins q-TSPP conjecture:

$$
\sum_{\pi \in T(n)} q^{\left|\pi / S_{3}\right|}=\prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}} \quad(\equiv)
$$

For $q=1$:

$$
|T(n)|=\prod_{1 \leq i \leq j \leq k \leq n} \frac{i+j+k-1}{i+j+k-2}
$$

(Stembridge)

The determinant

Reduction by Soichi Okada:

The q-TSPP conjecture is true if

$$
\operatorname{det}\left(a_{i, j}\right)_{1 \leq i, j \leq n}=\prod_{1 \leq i \leq j \leq k \leq n}\left(\frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}\right)^{2}=: b_{n}
$$

where
$a_{i, j}:=q^{i+j-1}\left(\left[\begin{array}{c}i+j-2 \\ i-1\end{array}\right]_{q}+q\left[\begin{array}{c}i+j-1 \\ i\end{array}\right]_{q}\right)+\left(1+q^{i}\right) \delta_{i, j}-\delta_{i, j+1}$
where

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-k+1}\right)}{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \cdots(1-q)} .
$$

The holonomic ansatz

Second reduction by Doron Zeilberger:
"Pull out of the hat" a discrete function $c_{n, j}$ and prove

$$
c_{n, n}=1 \quad(n \geq 1)
$$

$$
\begin{array}{ll}
\sum_{j=1}^{n} c_{n, j} a_{i, j}=0 & (1 \leq i<n) \\
\sum_{j=1}^{n} c_{n, j} a_{n, j}=\frac{b_{n}}{b_{n-1}} & (n \geq 1)
\end{array}
$$

Then $\operatorname{det}\left(a_{i, j}\right)_{1 \leq i, j \leq n}=b_{n}$ holds.

Hence,

Pull out of the hat!

Manuel Kauers guessed some recurrences for $c_{n, j}$.
Their Gröbner basis has the form

$$
\begin{aligned}
\bigcirc c_{n, j+4}= & \bigcirc c_{n, j}+\bigcirc c_{n, j+1}+\bigcirc c_{n, j+2}+\bigcirc c_{n, j+3} \\
& +\bigcirc c_{n+2, j}+\bigcirc c_{n+2, j+1} \\
\bigcirc c_{n+1, j+3}= & \bigcirc c_{n, j}+\bigcirc c_{n, j+1}+\bigcirc c_{n, j+2}+\bigcirc c_{n, j+3} \\
& +\bigcirc c_{n+1, j} \bigcirc c_{n+1, j+1}+\bigcirc c_{n+1, j+2} \\
& +\bigcirc c_{n+2, j}+\bigcirc c_{n+2, j+1}+\bigcirc c_{n+3, j} \\
\bigcirc c_{n+2, j+2}= & \bigcirc c_{n, j}+\bigcirc c_{n, j+1}+\bigcirc c_{n, j+2}+\bigcirc c_{n, j+3} \\
& +\bigcirc c_{n+2, j}+\bigcirc c_{n+2, j+1} \\
\bigcirc c_{n+3, j+1}= & \bigcirc c_{n, j}+\bigcirc c_{n, j+1}+\bigcirc c_{n, j+2}+\bigcirc c_{n, j+3} \\
& +\bigcirc c_{n+1, j}+\bigcirc c_{n+1, j+1}+\bigcirc c_{n+1, j+2} \\
& +\bigcirc c_{n+2, j}+\bigcirc c_{n+2, j+1}+\bigcirc c_{n+3, j} \\
\bigcirc c_{n+4, j}= & \bigcirc c_{n, j}+\bigcirc c_{n, j+1} \text { O} c_{n, j+2}+\bigcirc c_{n, j+3} \\
& +\bigcirc c_{n+2, j}+\bigcirc c_{n+2, j+1}
\end{aligned}
$$

where each \bigcirc represents a polynomial in $\mathbb{Q}\left[q, q^{j}, q^{n}\right]$ of total degree ≤ 100.

$$
c_{n, n}=1 \text { for all } n \geq 1
$$

- recurrence for $c_{n, j}$ of the form

$$
p_{7} c_{n+7, j+7}=p_{6} c_{n+6, j+6}+\cdots+p_{1} c_{n+1, j+1}+p_{0} c_{n, j}
$$

with $p_{i} \in \mathbb{Q}\left[q, q^{j}, q^{n}\right]$

- $j \rightarrow n$ yields a recurrence for the diagonal sequence $c_{n, n}$
- operator factors into $P_{1} P_{2}$ with P_{2} equivalent to

$$
c_{n+1, n+1}=c_{n, n}
$$

- $c_{1,1}=\cdots=c_{7,7}=1$

$$
\left(1+q^{n}\right)-c_{n, n-1}+\sum_{j=1}^{n} c_{n, j}^{\prime}=\frac{b_{n}}{b_{n-1}}
$$

with $\quad c_{n, j}^{\prime}=q^{n+j-1}\left(\left[\begin{array}{c}n+j-2 \\ n-1\end{array}\right]_{q}+q\left[\begin{array}{c}n+j-1 \\ n\end{array}\right]_{q}\right) c_{n, j}$

- recurrences for $c_{n, j}^{\prime}$ via closure properties (HolonomicFunctions)
- find a relation of the form

$$
p_{7} c_{n+7, j}^{\prime}+\cdots+p_{1} c_{n+1, j}^{\prime}+p_{0} c_{n, j}^{\prime}=t_{n, j+1}-t_{n, j}
$$

where the p_{7}, \ldots, p_{0} are rational functions in $\mathbb{Q}\left(q, q^{n}\right)$ and $t_{n, j}$ is a $\mathbb{Q}\left(q, q^{j}, q^{n}\right)$-linear combination of certain shifts of $c_{n, j}^{\prime}$.

- creative telescoping: recurrence for the sum
- closure properties: recurrence for the left-hand side
- compare with recurrence for right-hand side
- (finitely many) initial values

Great! Are we done now?

In practice, estimated timings are:

Zeilberger slow:	1677721600 days
Takayama:	52428800 days
Chyzak:	$?$
polynomial ansatz:	4000 days

New idea

Creative telescoping relation

$$
p_{7}\left(q, q^{n}\right) c_{n+7, j}^{\prime}+\cdots+p_{0}\left(q, q^{n}\right) c_{n, j}^{\prime}=t_{n, j+1}-t_{n, j}
$$

with $t_{n, j}=r_{1}\left(q, q^{n}, q^{j}\right) c_{n+3, j+2}^{\prime}+\cdots+r_{10}\left(q, q^{n}, q^{j}\right) c_{n, j}^{\prime}$
ansatz with

$$
r_{k}\left(q, q^{n}, q^{j}\right)=\frac{\sum_{l=0}^{L} r_{k, l}\left(q, q^{n}\right)\left(q^{j}\right)^{l}}{d_{k}\left(q, q^{n}, q^{j}\right)}
$$

where the denominators d_{k} can be "guessed" (leading coefficients of the Gröbner basis).
\longrightarrow linear system over $\mathbb{Q}\left(q, q^{n}\right)$

Modular computations

Techniques:

- polynomial interpolation
- rational reconstruction
- Chinese remaindering

Solving the linear system over $\mathbb{Q}\left(q, q^{n}\right)$:

- 1167 interpolation points for q
- 363 interpolation points for q^{n}
- each case takes about a minute (after lots of optimizations)
- estimated computation time: $1167 \cdot 363 \cdot 60 s=294$ days

Many other tricks. . .

Speedy Gonzales

The two compute servers at RISC

- speedy: QuadCore Xeon E5345, 9320MHz, 16GB RAM
- gonzales: QuadCore Xeon X5460, 12640MHz, 32GB RAM worked day and night, interrupted only by the cleaning professionals and a RISC colleague...

The "birthday present"

"Huge paper stack"

"Theorems for a price"?

Theorem for a prize!

Thanks, Doron, and happy birthday!

