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Beatty’s Theorem, 1926; Rayleigh 1894

• For α>0 irrational and 1/α+1/β=1, let 

A=∪n≥1 {⌊nα⌋}, B=∪n≥1 {⌊nβ⌋}. 

• Then the sets A, B split the positive 
integers: A∩B=∅, A∪B=Z≥1.

• Condition 1/α+1/β=1 is clearly necessary. 

• The thm states that it’s also sufficient.

• MAA, April 2010: “The result is so 
astonishing and yet easily proved that we 
include a short proof for the reader’s 
pleasure.”
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Doron for Doron: a Pleasure Proof

• For any k∈Z≥1, number of terms < 

k is ⌊k/α⌋+⌊k/β⌋ (by irrationality of 
α)=⌊k/α⌋+⌊k(1-1/α)⌋ 
=k+⌊k/α⌋+⌊-k/α⌋=k-1. 

• Similarly, A∪B contains k terms < 
k+1. Hence there is exactly one 
term < k+1 but not less than k; it 
equals k.
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player -positions in 2-: P, NApplication
games

N-position: a position from which 
the Next player can force a win.

P-position: a position from which 
the Previous player can win. 

P, N – set of all P-positions, N-
positions, respectively.
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• P– Previous player can force a win.

• N– Next player can force a win. Thus:

• Position u ∈ P iff F(u) ⊆ N .

• Position u ∈ N iff F(u) ∩ P ≠ ∅ .

• Notice that P and N are not symmetric.

• In the (directed) Game Graph, P is the 
graph kernel. 

• The sets P, N split Z≥1. Conversely, 

splittings into ≥2 sets often induce new 
games.
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Wythoff’s game

• Define a game on two piles of tokens:

• take any positive number of tokens 
from a single pile, or

• the same (positive) number of tokens 
from both piles.

• Player making last move wins.

• Then (0,0), (1,2)∈P.
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• Recursive winning strategy:
an=mex {ai, bi : 0�i<n} n≥0, 
bn=an+n.

109876543210n

161412119864310an

262320181513107520bn
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Algebraic strategy:

• Let τ= (1+√{5})/2, which is the solution 
of 1/x+1/(x+1)=1; β=τ2=τ+1. 

• Theorem. an=⌊nτ⌋, bn=⌊nτ2⌋ n≥0, and the 
squences {an}, {bn} are complementary 
for n≥1.

• Note: τ=[1,1,1,1,…] (continued fraction 
expansion).

• Convergents: pn/qn, where 

• p-1=p0=1,  pn=pn-1+pn-2 (n≥1).
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Exotic numeration system

• Every N∈Z≥1 has a unique 

representation: N=∑i≥0 dipi, where the 
digits di satisfy 0�di�t (i≥0), and 

• di=t ⇒ di-1=0 (i≥1). Then 

• R(an)=all numbers ending in an even 
number of 0s, bn all numbers ending 
in odd number of 0s; for every n, 
R(bn) is the left shift of R(an).
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Multi-pile Wythoff: illustration m=3
Take any positive number from a single  pile, or 
a,b,c from the piles s.t. 

(1) a⊕b⊕c=0. (⊕ is Nim-sum;  this is 
generalization of Wythoff.)         

• Write the P-positions in the form  

Cj=(j, An
j, Bn

j)n≥0 , 1�j�An
j�Bn

j , j fixed. Claim: 
Under the move rule (1), Wythoff strategy is 
almost preserved: 

• An
j, Bn

j almost split Z≥1

• An
j is almost mex {Ai

j, Bi
j : i<n}

• Bn
j-An

j =1 ∀ large n. 



11

Explaining “almost preservation”

• For j=1, (1,2,k)∈N ∀ k≥2, since 
(1,2)∈P in Wythoff. Thus 2 cannot 
appear in the list of P-positions of 3-
pile Wythoff. 

• A small set X of integers is excluded.

• How does this affect, if at all, the 
structure of the complementary 
sequences?
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Two conjectures (F, 1993)

(1) For every fixed j≥1, ∃ integer nj
and finite set X=Xj⊂Z≥0, s.t. ∀ n≥nj, 

• An
j=mex (Xj∪{Ai

j, Bi
j : 0�i<n}), 

Bn
j=An

j+n.

• (2) For every fixed j≥1, ∃ integer γj, 
s.t. ∀ n≥nj, 

• An
j∈{⌊nτ⌋-γj-1, ⌊nτ⌋-γj, ⌊nτ⌋-γj+1}, 
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• For approaching the conjectures, 
investigated a splitting system 
perturbed by X:

Recall: an=mex {ai, bi : 0�i<n} n≥0, 
bn=an+n, A={an}n≥1, B={bn}n≥1. Then 
A={⌊nτ⌋}n≥1, B={⌊nτ2⌋}n≥1. 
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Let X�Z≥1, X finite, 

a’n=mex1 {X∪{a’i,b’i : n0�i<n}},  
b’n=a’n+n, n≥n0, 

A’={a’n}n≥n0, B’={b’n}n≥n0.

Let N=max (X)+1. Then A’, B’ are 

N-upper complementary for some 
n0≥1.

Relate A’ to A, B’ to B.
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Shift sequence: sn:=an-a’n

• Theorem (Krieger, F 2004). ∃ p∈Z≥1, 
γ∈Z s.t. ∀ n≥p, either sn=γ; or else ∀

n≥p, sn∈{γ-1,γ,γ+1}. If the latter then 

• sn assumes each of the 3 values 
infinitely often, 

• sn≠γ ⇒ sn-1=sn+1=γ. 

• Indices of irregular shifts can be 
partitioned into K subsets, each of 
which satisfies a linear recurrence.
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More on the conjectures

•We also proved Conjecture (1) ⇒
Conjecture (2). 

•Was also proved by Xinyu Sun 
2007 with additional results. 

• Zeilberger, Sun (2004) proved the 
2 conjectures for m=3 and 
1�j�10. 
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Example: t = 2, n0 = 6, X = {1,5}.

b’
n

a’
n

snbnann

20 8614 26

23 9617 37

2711720 48

3012624 69

3414727 710

3715730 811

4016733 912

44188361013

47198391114

51219421215

54229451316

58249491517

61259521618

64268561819

68289591920

b’na’nsnbnann

 71298 632121

 75319 662222

 78329 692323

 81338 732524

 85359 762625

 88368 802826

 92389 832927

 95398 873128

 99419 903229

102428 943430

105438 973531

1094581013732

1124681043833

1164881084034

1194981114135
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n

s
n

The first 8000 S values. The 

pattern we observed before 

continues: s
n

assumes only three 

values, 7,8,9, where 8 is the 

main value, and 7 or 9 appear 

more and more sparsely. 
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k

The distance between the first 60 

irregular (non-8) s values. While 

growing larger as k grows, it also 

maintains a very regular fractal-

like pattern. 

n
k+1

-n
k
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n

sn

c = 1

n0 = 23                                                        

X = {7, 9, 10, 15, 18, 20, 21, 23, 25, 26, 27, 33, 34, 35, 41, 42, 46}

Standard shift value: γγγγ = 30                                  

Number of irregular shift sequences: K = 77                     
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k

The distance between 

consecutive irregular 

s values.

n
k+1

-n
k
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n

sn

c = 3

n0 = 5

X = {3, 7, 8}                       

Standard shift value: γγγγ = 5                                  

Number of irregular shift sequences: K = 4                      
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k

The distance between 

consecutive irregular s 

values.

n
k+1

-n
k
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αααα = 1.7382072458106652          

n0 = 29                             

X = {0, 22, 24, 30, 38, 39, 41, 44, 46}

ββββ−−−−αααα = 0.61643               

Standard shift value: γγγγ = 54

n

s
n
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k

The distance between 

consecutive irregular 

s values.

n
k+1

-n
k



Questions

• What determines the number K of 
irregular shift sequences sn?

• For some perturbation sets X get γn=n 
for all n, without getting the 
additional two values γn=n-1, γn=n+1. 
Characterize those cases.

• Perturbation sets for general Beatty 
sequences. 
26



Continued

• Same questions for s-fold 
complementarity and fractional 
complementarity.. 

27
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Doron and Xinyu Sun 2004

• Proved the two conjectures for 3 piles and 
1�j�10. 

• Thus if you do something for Doron, you 
get at least a 10-fold return. Moreover, 
there is the prospect of an ∞-return.

• They wrote: The method discussed here 
should be extendable to prove the 
conjectures for Wythoff's games with 
more than 3 heaps. A numerical method, 
instead of the symbolic one presented 
here, may also be developed to improve 
the performance…
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Doron and Xinyu (contnd)

•…We hope the result presented 
here would be a stepping-stone 
for others to finally prove the 
conjectures, and better yet, to 
provide a constructive polynomial-
time winning strategy for the 
game.
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S-fold complementarity

• Let s∈Z≥1. Cover every positive 

integer exactly s times. 

• Theorem (O’Bryant 2002, Larsson 
2010). α irrational and 1/α+1/β=s, 
α<β. Let 

A=∪n≥s {⌊nα⌋}, B=∪n≥1 {⌊nβ⌋}. 

• Then the sets A, B  s-split the positive 
integers: A∪B=s×Z≥1.
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Proof of s-fold Beatty Theorem

•O’Bryant: Generating function, 
Power series.

• Larsson: Combinatorial.

• Pleasure proof of AMM can be 
extended easily to s-fold 
complementarity.
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Uspensky 1927, Graham 1963

• α1,…,αm positive real numbers. 
Suppose that ⌊nα1⌋n≥1,…,⌊nαm⌋n≥1

split the positive integers. Then m�2.

• Uspensky’s proof depends on 
Kronecker’s Theorem on simultaneous 
diophantine approximation. Graham’s 
is purely combinatorial.
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Another Question

•Does Uspensky and Graham’s 
result hold also for s-fold 
complementarity? 

•We (Hegarty, Larsson, F) 
conjecture that the answer is 
positive, excepting trivial cases.
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A conjecture solved for the integers,  
irrationals; wide open for the rationals.

• Let 0<α1<α2<…<αm, γ1,…,γm reals, 
m≥3. If ∪i=1

m ⌊nαi+γi⌋ (n≥1) is a 
DCS, then αi=(2m-1)/2m-i, i=1,…,m (F 
1973). 

• Easy to see that 

∪i=1
m ⌊n(2m-1)/2m-i⌋-2i-1+1, i=1,…,m, 

n≥1, is indeed a DCS. Example: m=3.



35

∪i=1
m⌊n(2m-1)/2m-i⌋-2i-1+1, i=1,…,m, n≥1

7n-3⌊7n/2⌋-1⌊7n/4⌋n

4211 

632

53

74
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Split with arithmetic sequences

• Evens and odds; evens and numbers 
=1 mod 4, numbers=3 mod 4…´
Theorem. Suppose that ∪i=1

m (nai+bi), 
n≥1, m≥2, is a DCS, 0<a1�…�am

integers. Then am-1=am. 

• Proof. Consider the generating 
function ∑i=1

m zbi/(1-zai)=z/(1-z). 
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Mirsky, Newman, Davenport, Rado

• Proof. ∑i=1
m zbi/(1-zai)=z/(1-z). 

Suppose am-1<am. Let ξ=primitive 
amth root of unity, and let z→ξ. (in 
Erdos 1952). Erdos asked for 
elementary proof.

• 1st elementary proof: Berger, 
Felzenbaum, F 1986. Others followed.
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Irrational case

• α>0 irrational, 1/α+1/β=1. Then 
{⌊nα⌋}n≥1 and {⌊nβ⌋}n≥1 split Z≥1. 

So do {⌊nα⌋}n≥1, {⌊(2n)β)⌋}n≥1, 

{⌊(2n-1) β⌋}n≥1.

• Graham 1973: All irrational DCS 
are  compositions of integer DCS.

• So 2 moduli are same for m≥3. 
Only the rational case is left open. 
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• Erdos & Graham, 1980. Special cases: 
F, 1973; Simpson, 1991; Berger, 
Felzenbaum, F, 1986, Morikawa, 
1982, 1985 proved for m=3. 
Morikawa, 1985, Simpson 2004: 
“Japanese Remainder Theorem”. 
Simpson, 1991: conjecture true if 
α1�3/2. Altman, Gaujal, Hordijk 2000: 
proved for m=4, using “balanced 
sequences”. Using same method, 
Tijdeman proved m=5, 1998; m=6, 
2000; Barat, Varju m=7 (2005).



40

• Using balanced sequences, Tijdeman
proved for m=5, 1998; m=6, 2000; 
Barat, Varju for m=7, 2005. Graham 
O’Bryant, 2005 generalized conjecture 
to s-covering, used Fourier analysis to 
prove special cases. Vuillon, 2003; 
Paquin, Vuillon, 2007.

• Scheduling: Kubiak, 2003; Brauner, 
Crama, 2004; Brauner, Jost, 2008.


