Ask Not What Doron Zeilberger Can Do For You; Ask What You Can Do For Doron

Aviezri S. Fraenkel Weizmann Institute of Science Rehovot, Israel

Beatty's Theorem, 1926; Rayleigh 1894 • For $\alpha > 0$ irrational and $1/\alpha + 1/\beta = 1$, let $A = \bigcup_{n \ge 1} \{ \lfloor n\alpha \rfloor \}, B = \bigcup_{n \ge 1} \{ \lfloor n\beta \rfloor \}.$ • Then the sets A, B split the positive integers: $A \cap B = \emptyset$, $A \cup B = \mathbb{Z}_{>1}$. • Condition $1/\alpha + 1/\beta = 1$ is clearly necessary. • The thm states that it's also sufficient. • MAA, April 2010: "The result is so astonishing and yet easily proved that we include a short proof for the reader's pleasure."

Doron for Doron: a Pleasure Proof • For any $k \in \mathbb{Z}_{>1}$, number of terms < k is $|k/\alpha| + |k/\beta|$ (by irrationality of $\alpha) = |k/\alpha| + |k(1-1/\alpha)|$ $=k+|k/\alpha|+|-k/\alpha|=k-1.$

Similarly, A∪B contains k terms < k+1. Hence there is exactly one term < k+1 but not less than k; it equals k.

Application: P, N-positions in 2-player games

N-position: a position from which the <u>Next player can force a win.</u> P-position: a position from which the Previous player can win. $\mathcal{P}, \mathcal{N}-$ set of all P-positions, Npositions, respectively.

- P– Previous player can force a win.
- N– Next player can force a win. Thus:
- Position $u \in \mathcal{P}$ iff $F(u) \subseteq \mathcal{N}$.
- Position $u \in \mathcal{N} \text{ iff } F(u) \cap \mathcal{P} \neq \varnothing$.
- \bullet Notice that ${\mathcal P}$ and ${\mathcal N}$ are not symmetric.
- In the (directed) Game Graph, *P* is the graph <u>kernel</u>.
- The sets \mathcal{P} , \mathcal{N} split $\mathbb{Z}_{\geq 1}$. Conversely, splittings into ≥ 2 sets often induce new games.

Wythoff's game

- Define a game on two piles of tokens:
- take any positive number of tokens from a <u>single</u> pile, or
- the same (positive) number of tokens from <u>both</u> piles.
- Player making last move wins.
- Then (0,0), $(1,2) \in \mathcal{P}$.

n	0	1	2	3	4	5	6	7	8	9	10
a _n	0	1	3	4	6	8	9	11	12	14	16
b _n	0	2	5	7	10	13	15	18	20	23	26

• Recursive winning strategy: $a_n = mex \{a_i, b_i : 0 \le i \le n \ge 0, b_n = a_n + n.$

Algebraic strategy:

- Let $\tau = (1+\sqrt{5})/2$, which is the solution of 1/x+1/(x+1)=1; $\beta = \tau^2 = \tau + 1$.
- <u>Theorem</u>. $a_n = \lfloor n\tau \rfloor$, $b_n = \lfloor n\tau^2 \rfloor$ $n \ge 0$, and the squences $\{a_n\}$, $\{b_n\}$ are complementary for $n \ge 1$.
- Note: τ=[1,1,1,1,...] (continued fraction expansion).
- Convergents: p_n/q_n, where
- $p_{-1} = p_0 = 1$, $p_n = p_{n-1} + p_{n-2}$ (n ≥ 1).

Exotic numeration system

- Every $N \in \mathbb{Z}_{\geq 1}$ has a unique representation: $N = \sum_{i \geq 0} d_i p_i$, where the digits d_i satisfy $0 \leq d_i \leq t$ ($i \geq 0$), and
- $d_i = t \Rightarrow d_{i-1} = 0$ (i ≥ 1). Then
- R(a_n)=all numbers ending in an even number of 0s, b_n all numbers ending in odd number of 0s; for every n, R(b_n) is the <u>left shift</u> of R(a_n).

Multi-pile Wythoff: illustration m=3Take any positive number from a single pile, or a,b,c from the piles s.t. (1) $a \oplus b \oplus c = 0$. (\oplus is Nim-sum; this is generalization of Wythoff.) Write the P-positions in the form $C_i = (j, A_n^j, B_n^j)_{n>0}, 1 \le j \le A_n^j \le B_n^j, j \text{ fixed. } \underline{Claim}$ Under the move rule (1), Wythoff strategy is almost preserved:

- A_n^{j} , B_n^{j} almost split $\mathbb{Z}_{\geq 1}$
- A_n^j is almost mex $\{A_i^j, B_i^j : i < n\}$
- $B_n^{o j} A_n^{j} = 1 \forall \text{ large } n.$

Explaining "almost preservation" • For j=1, $(1,2,k) \in \mathcal{N} \forall k \ge 2$, since $(1,2) \in \mathcal{P}$ in Wythoff. Thus 2 cannot appear in the list of P-positions of 3pile Wythoff.

• A small set X of integers is excluded.

 How does this affect, if at all, the structure of the complementary sequences? Two conjectures (F, 1993) (1) For every fixed $j \ge 1$, \exists integer n_j and finite set $X = X^j \subset \mathbb{Z}_{\ge 0}$, s.t. $\forall n \ge n_j$, • $A_n^j = mex (X^j \cup \{A_i^j, B_i^j : 0 \le i < n\}), B_n^j = A_n^j + n.$

- (2) For every fixed j≥1, ∃ integer γ_j,
 s.t. ∀ n≥n_j,
- $A_n^j \in \{\lfloor n\tau \rfloor \gamma_j 1, \lfloor n\tau \rfloor \gamma_j, \lfloor n\tau \rfloor \gamma_j + 1\},\$

• For approaching the conjectures, investigated a splitting system perturbed by X: Recall: $a_n = mex \{a_i, b_i : 0 \le i < n\} n \ge 0$, $b_n = a_n + n$, $A = \{a_n\}_{n \ge 1}$, $B = \{b_n\}_{n \ge 1}$. Then $A = \{\lfloor n\tau \rfloor\}_{n \ge 1}$, $B = \{\lfloor n\tau^2 \rfloor\}_{n \ge 1}$.

Let $X \subseteq \mathbb{Z}_{>1}$, X finite, $a'_{n} = mex_{1} \{ X \cup \{ a'_{i}, b'_{i} : n_{0} \le i < n \} \},$ $b'_n = a'_n + n, n \ge n_0,$ $A' = \{a'_n\}_{n > n0}, B' = \{b'_n\}_{n > n0}.$ Let N = max(X) + 1. Then A', B' are N-upper complementary for some $n_0 \ge 1$. Relate A' to A, B' to B.

Shift sequence: $s_n := a_n - a'_n$

- Theorem (Krieger, F 2004). $\exists p \in \mathbb{Z}_{\geq 1}$, $\gamma \in \mathbb{Z}$ s.t. $\forall n \geq p$, either $s_n = \gamma$; or else \forall $n \geq p$, $s_n \in \{\gamma - 1, \gamma, \gamma + 1\}$. If the latter then
- s_n assumes each of the 3 values infinitely often,
- $S_n \neq \gamma \Rightarrow S_{n-1} = S_{n+1} = \gamma$.
- Indices of irregular shifts can be partitioned into K subsets, each of which satisfies a linear recurrence.

More on the conjectures

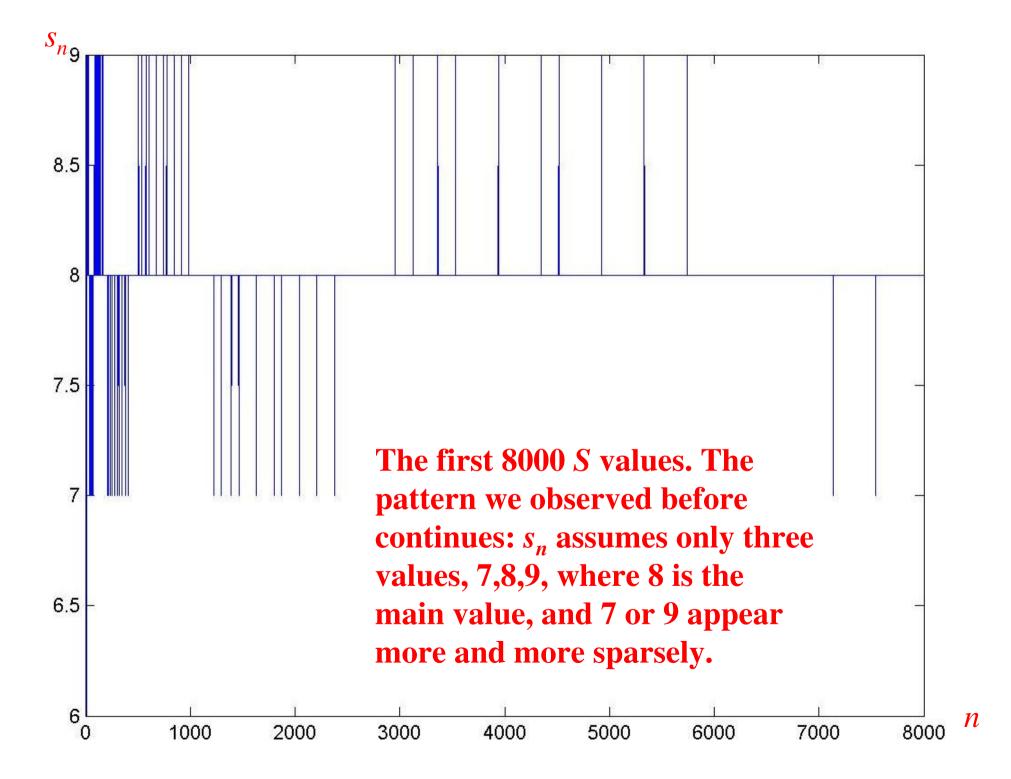
- We also proved Conjecture (1) \Rightarrow Conjecture (2).
- Was also proved by Xinyu Sun 2007 with additional results.
- Zeilberger, Sun (2004) proved the 2 conjectures for m=3 and $1 \le j \le 10$.

Example: t = 2, $n_0 = 6$, $X = \{1,5\}$.

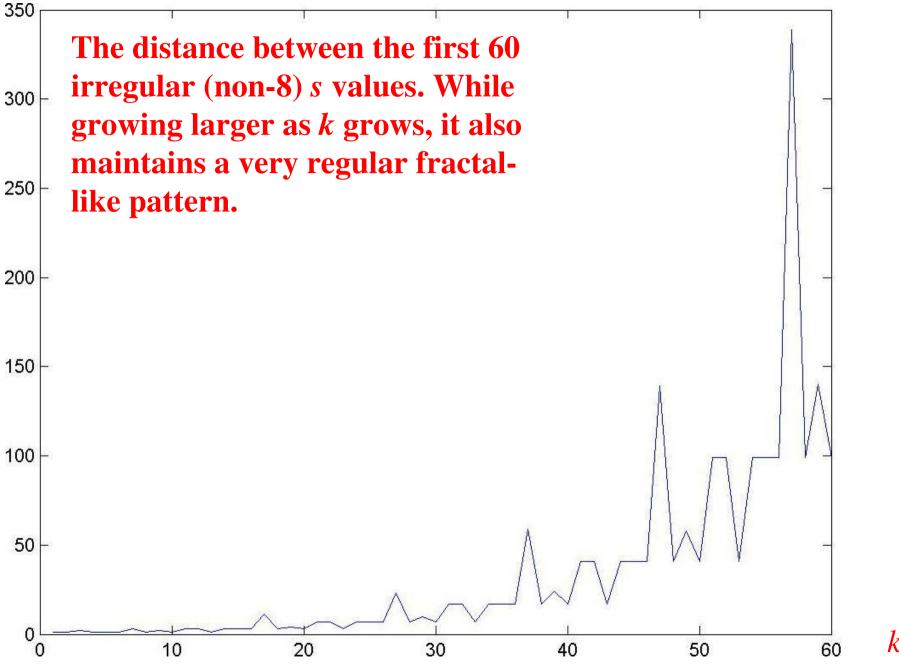
n	a _n	b _n	s _n	a'	b'
				n	n
6	2	14	6	8	20
7	3	17	6	9	23
8	4	20	7	11	27
9	6	24	6	12	30
10	7	27	7	14	34
11	8	30	7	15	37
12	9	33	7	16	40
13	10	36	8	18	44
14	11	39	8	19	47
15	12	42	9	21	51
16	13	45	9	22	54
17	15	49	9	24	58
18	16	52	9	25	61
19	18	56	8	26	64
20	19	59	9	28	68

n	a _n	b _n	s _n	a ′_n	b ' _n
21	21	63	8	29	71
22	22	66	9	31	75
23	23	69	9	32	78
24	25	73	8	33	81
25	26	76	9	35	85
26	28	80	8	36	88
27	29	83	9	38	92
28	31	87	8	39	95
29	32	90	9	41	99
30	34	94	8	42	102
31	35	97	8	43	105
32	37	101	8	45	109
33	38	104	8	46	112
34	40	108	8	48	116
35	41	111	8	49	119

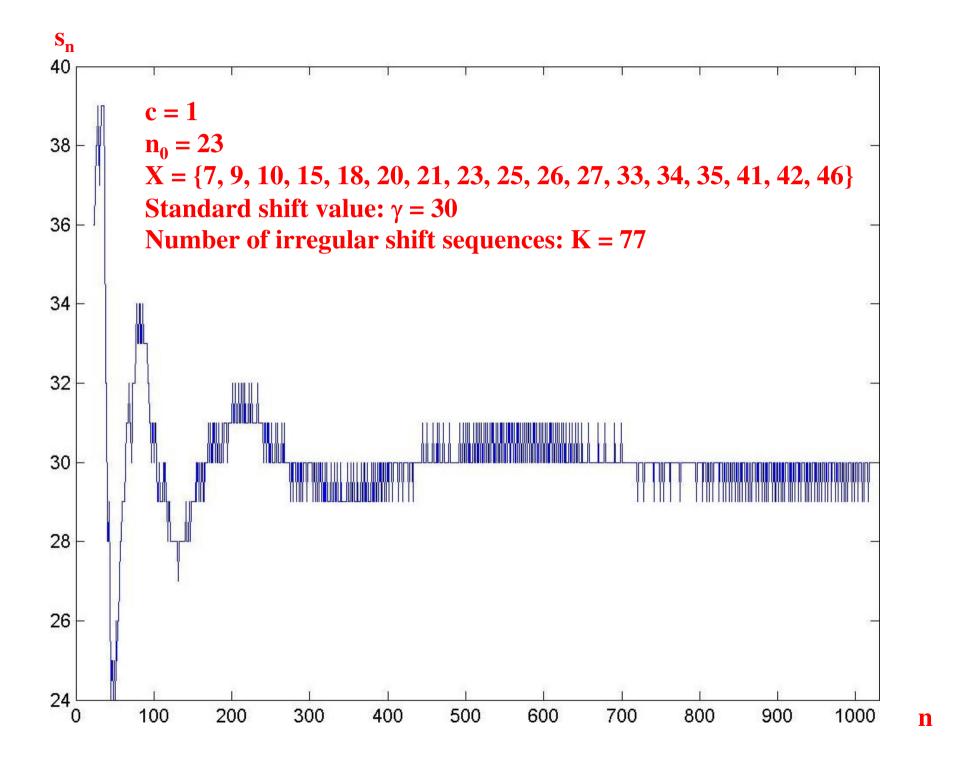
17



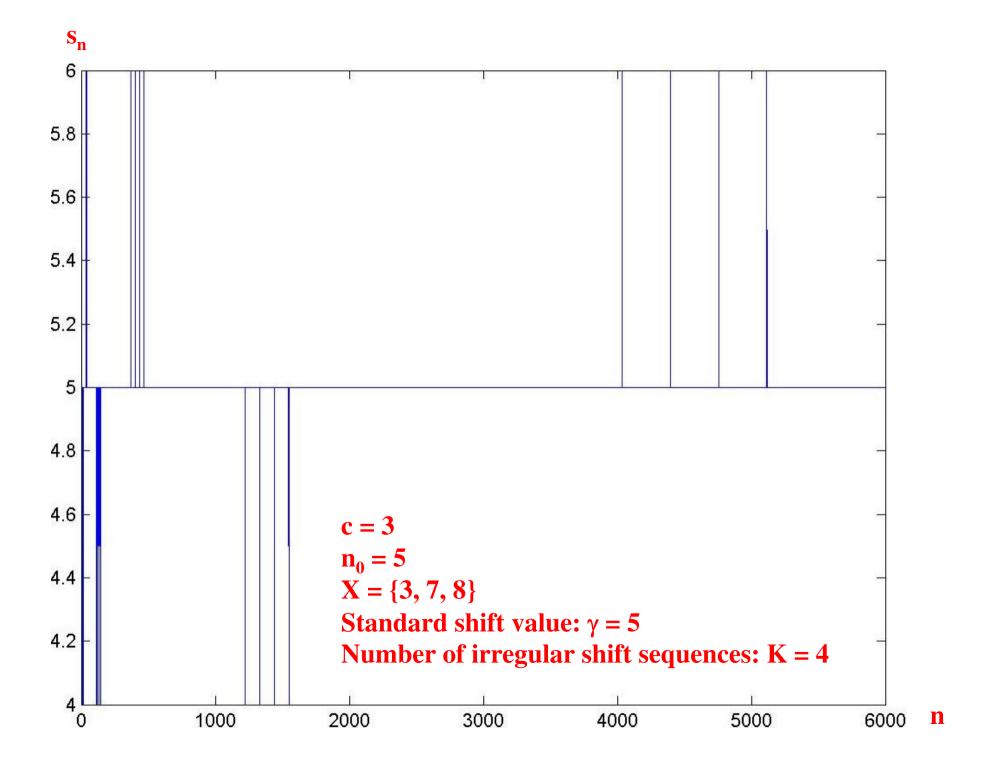
 n_{k+1} - n_k

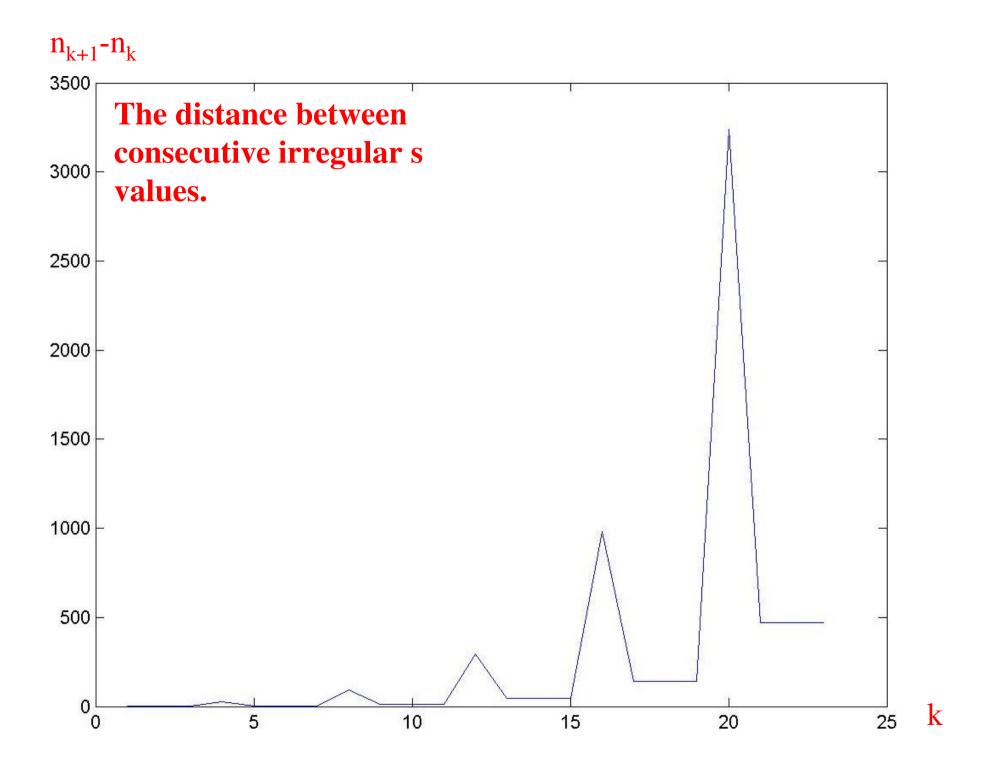


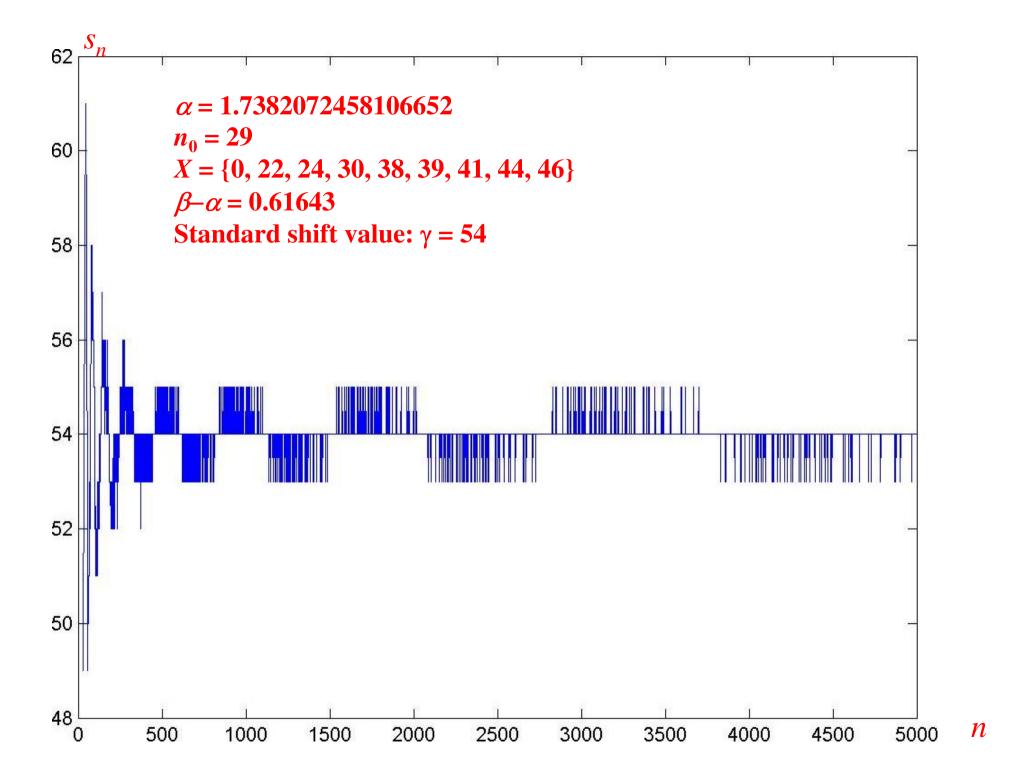
k

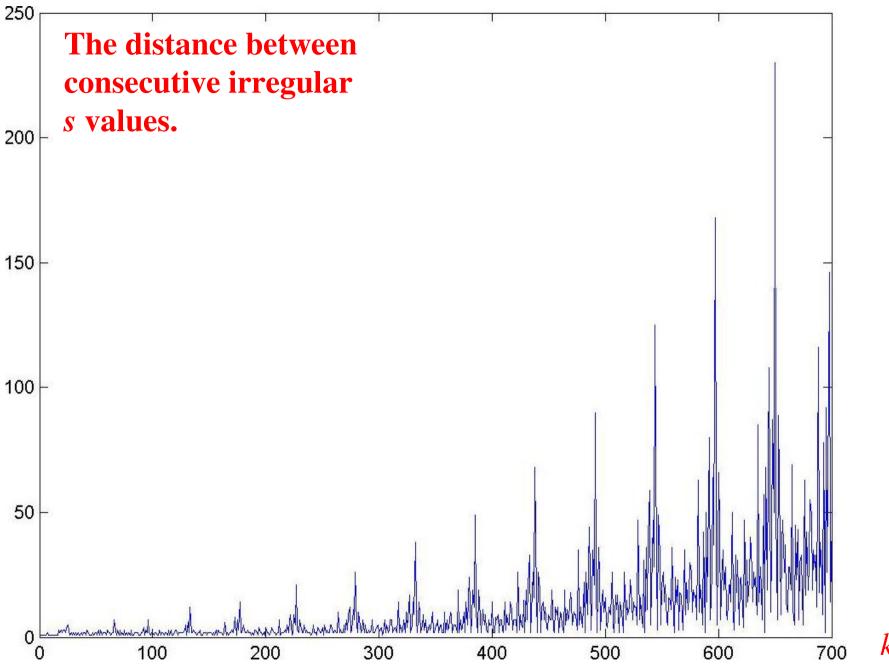












k

Questions

- What determines the number K of irregular shift sequences s_n?
- For some perturbation sets X get $\gamma_n = n$ for all n, without getting the additional two values $\gamma_n = n-1$, $\gamma_n = n+1$. Characterize those cases.
- Perturbation sets for general Beatty sequences.

Continued

 Same questions for s-fold complementarity and fractional complementarity..

Doron and Xinyu Sun 2004

- Proved the two conjectures for 3 piles and $1 \le j \le 10$.
- Thus if you do something for Doron, you get at least a 10-fold return. Moreover, there is the prospect of an ∞ -return.
- They wrote: The method discussed here should be extendable to prove the conjectures for Wythoff's games with more than 3 heaps. A numerical method, instead of the symbolic one presented here, may also be developed to improve the performance...

Doron and Xinyu (contnd)

 ...We hope the result presented here would be a stepping-stone for others to finally prove the conjectures, and better yet, to provide a *constructive* polynomialtime winning strategy for the game.

S-fold complementarity

- Let $s \in \mathbb{Z}_{\geq 1}$. Cover every positive integer exactly s times.
- Theorem (O'Bryant 2002, Larsson 2010). α irrational and $1/\alpha+1/\beta=s$, $\alpha<\beta$. Let

 $A=\cup_{n\geq s}\{\lfloor n\alpha\rfloor\}, B=\cup_{n\geq 1}\{\lfloor n\beta\rfloor\}.$

• Then the sets A, B s-split the positive integers: $A \cup B = s \times \mathbb{Z}_{\geq 1}$.

Proof of s-fold Beatty Theorem

- O'Bryant: Generating function, Power series.
- Larsson: Combinatorial.
- Pleasure proof of AMM can be extended easily to s-fold complementarity.

Uspensky 1927, Graham 1963

- $\alpha_1,...,\alpha_m$ positive real numbers. Suppose that $\lfloor n\alpha_1 \rfloor_{n \ge 1},..., \lfloor n\alpha_m \rfloor_{n \ge 1}$ split the positive integers. Then m ≤ 2 .
- Uspensky's proof depends on Kronecker's Theorem on simultaneous diophantine approximation. Graham's is purely combinatorial.

Another Question

- Does Uspensky and Graham's result hold also for s-fold complementarity?
- We (Hegarty, Larsson, F) conjecture that the answer is positive, excepting trivial cases.

A conjecture solved for the integers, irrationals; wide open for the rationals.

- Let $0 < \alpha_1 < \alpha_2 < ... < \alpha_m$, $\gamma_1, ..., \gamma_m$ reals, $m \ge 3$. If $\bigcup_{i=1}^{m} \lfloor n\alpha_i + \gamma_i \rfloor$ ($n \ge 1$) is a DCS, then $\alpha_i = (2^m - 1)/2^{m - i}$, i = 1, ..., m (F 1973).
- Easy to see that $\cup_{i=1}^{m} \lfloor n(2^{m}-1)/2^{m-i} \rfloor 2^{i-1} + 1, i = 1, ..., m,$ n \geq 1, is indeed a DCS. Example: m=3.

$\cup_{i=1}^{m} [n(2^{m-1})/2^{m-i}] - 2^{i-1} + 1, i=1,...,m, n \ge 1$

n	[7n/4]	[7n/2]-1	7n-3
1	1	2	4
2	3	6	
3	5		
4 35	7		

Split with arithmetic sequences

- Evens and odds; evens and numbers =1 mod 4, numbers=3 mod 4...' Theorem. Suppose that $\cup_{i=1}^{m} (na_i+b_i)$, $n \ge 1$, $m \ge 2$, is a DCS, $0 < a_1 \le ... \le a_m$ integers. Then $a_{m-1} = a_m$.
- Proof. Consider the generating function $\sum_{i=1}^{m} z^{bi}/(1-z^{ai})=z/(1-z)$.

Mirsky, Newman, Davenport, Rado

- Proof. $\sum_{i=1}^{m} z^{bi}/(1-z^{ai})=z/(1-z)$. Suppose $a_{m-1} < a_m$. Let $\xi = \text{primitive}$ a_m th root of unity, and let $z \rightarrow \xi$. (in Erdos 1952). Erdos asked for elementary proof.
- 1st elementary proof: Berger, Felzenbaum, F 1986. Others followed.

Irrational case

• $\alpha > 0$ irrational, $1/\alpha + 1/\beta = 1$. Then $\{\lfloor n\alpha \rfloor\}_{n>1}$ and $\{\lfloor n\beta \rfloor\}_{n>1}$ split $\mathbb{Z}_{>1}$. So do $\{\lfloor n\alpha \rfloor\}_{n>1}, \{\lfloor (2n)\beta \}\}_{n>1},$ $\{ | (2n-1) \beta | \}_{n \ge 1}$ • Graham 1973: All irrational DCS are compositions of integer DCS. • So 2 moduli are same for m>3. Only the rational case is left open. • Erdos & Graham, 1980. Special cases: F, 1973; Simpson, 1991; Berger, Felzenbaum, F, 1986, Morikawa, 1982, 1985 proved for m=3. Morikawa, 1985, Simpson 2004: "Japanese Remainder Theorem". Simpson, 1991: conjecture true if $\alpha_1 \leq 3/2$. Altman, Gaujal, Hordijk 2000: proved for m=4, using "balanced sequences". Using same method, Tijdeman proved m=5, 1998; m=6, 2000; Barat, Varju m=7 (2005).

 Using balanced sequences, Tijdeman proved for m=5, 1998; m=6, 2000; Barat, Varju for m=7, 2005. Graham O'Bryant, 2005 generalized conjecture to s-covering, used Fourier analysis to prove special cases. Vuillon, 2003; Paquin, Vuillon, 2007.

• Scheduling: Kubiak, 2003; Brauner, Crama, 2004; Brauner, Jost, 2008.