Ask Not What Doron Zeilberger Can Do For You; Ask What You Can Do For Doron

Aviezri S. Fraenkel
Weizmann Institute of Science Rehovot, Israel

Beatty's Theorem, 1926; Rayleigh 1894

- For $\alpha>0$ irrational and $1 / \alpha+1 / \beta=1$, let

$$
A=\cup_{n \geq 1}\{\lfloor n \alpha\rfloor\}, B=\cup_{n \geq 1}\{\lfloor n \beta\rfloor\} .
$$

- Then the sets A, B split the positive integers: $A \cap B=\varnothing, A \cup B=\mathbb{Z}_{\geq 1}$.
- Condition $1 / \alpha+1 / \beta=1$ is clearly necessary.
- The thm states that it's also sufficient.
- MAA, April 2010: "The result is so astonishing and yet easily proved that we include a short proof for the reader's pleasure."

Doron for Doron: a Pleasure Proof

- For any $k \in \mathbb{Z}_{\geq 1}$, number of terms < k is $\lfloor k / \alpha\rfloor+\lfloor k / \beta\rfloor$ (by irrationality of $\alpha)=\lfloor k / \alpha\rfloor+\lfloor k(1-1 / \alpha)\rfloor$
$=k+\lfloor k / \alpha\rfloor+\lfloor-k / \alpha\rfloor=k-1$.
- Similarly, AUB contains k terms < $k+1$. Hence there is exactly one term < k+1 but not less than k; it ${ }_{3}$ equals k .

Application: P, N-positions in 2-player games
N-position: a position from which the Next player can force a win.
P-position: a position from which the Previous player can win.
\mathcal{P}, \mathcal{N} - set of all P-positions, N positions, respectively.

- P- Previous player can force a win.
- N- Next player can force a win. Thus:
- Position $u \in \mathcal{P}$ iff $F(u) \subseteq \mathcal{N}$.
- Position $u \in \mathcal{N}$ iff $F(u) \cap \mathcal{P} \neq \varnothing$.
- Notice that \mathcal{P} and \mathcal{N} are not symmetric.
- In the (directed) Game Graph, \mathcal{P} is the graph kernel.
- The sets \mathcal{P}, \mathcal{N} split $\mathbb{Z}_{\geq 1}$. Conversely, splittings into ≥ 2 sets often induce new games.

Wythoff's game

- Define a game on two piles of tokens:
- take any positive number of tokens from a single pile, or
- the same (positive) number of tokens from both piles.
- Player making last move wins.
- Then $(0,0),(1,2) \in \mathcal{P}$.

n	0	1	2	3	4	5	6	7	8	9	10
a_{n}	0	1	3	4	6	8	9	11	12	14	16
b_{n}	0	2	5	7	10	13	15	18	20	23	26

- Recursive winning strategy: $\mathrm{a}_{\mathrm{n}}=\operatorname{mex}\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}: 0 \leq \mathrm{i}<\mathrm{n}\right\} \mathrm{n} \geq 0$, $b_{n}=a_{n}+n$.

Algebraic strategy:

- Let $\tau=(1+\sqrt{ }\{5\}) / 2$, which is the solution of $1 / x+1 /(x+1)=1 ; \beta=\tau^{2}=\tau+1$.
- Theorem. $a_{n}=\lfloor n \tau\rfloor, b_{n}=\left\lfloor n \tau^{2}\right\rfloor n \geq 0$, and the squences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are complementary for $\mathrm{n} \geq 1$.
- Note: $\tau=[1,1,1,1, \ldots]$ (continued fraction expansion).
- Convergents: p_{n} / q_{n}, where
- $\mathrm{p}_{8}=\mathrm{p}_{0}=1, \mathrm{p}_{\mathrm{n}}=\mathrm{p}_{\mathrm{n}-1}+\mathrm{p}_{\mathrm{n}-2}(\mathrm{n} \geq 1)$.

Exotic numeration system

- Every $N \in \mathbb{Z}_{\geq 1}$ has a unique representation: $N=\sum_{i>0} d_{i} p_{i}$, where the digits d_{i} satisfy $0 \leq \mathrm{d}_{\mathrm{i}} \leq \mathrm{t}(\mathrm{i} \geq 0)$, and
- $\mathrm{d}_{\mathrm{i}}=\mathrm{t} \Rightarrow \mathrm{d}_{\mathrm{i}-1}=0(\mathrm{i} \geq 1)$. Then
- $R\left(a_{n}\right)=$ all numbers ending in an even number of $0 s, b_{n}$ all numbers ending in odd number of 0 s ; for every n , $R\left(b_{n}\right)$ is the left shift of $R\left(a_{n}\right)$.

Multi-pile Wythoff: illustration $\mathrm{m}=3$

Take any positive number from a single pile, or a,b,c from the piles s.t.
(1) $a \oplus b \oplus c=0$. (\oplus is Nim-sum; this is generalization of Wythoff.)

- Write the P-positions in the form
$C_{j}=\left(j, A_{n}{ }^{j}, B_{n}{ }^{j}\right)_{n \geq 0}, 1 \leq j \leq A_{n}{ }^{j} \leq B_{n}{ }^{j}, j$ fixed. Claim: Under the move rule (1), Wythoff strategy is almost preserved:
- $\mathrm{A}_{n}{ }^{j}, \mathrm{~B}_{\mathrm{n}}{ }^{\mathrm{j}}$ almost split $\mathbb{Z}_{\geq 1}$
- $A_{n}{ }^{j}$ is almost mex $\left\{A_{i}^{j}, B_{i}^{j}: i<n\right\}$
- $\mathrm{B}_{\mathrm{n}}{ }^{\mathrm{j}}-\mathrm{A}_{\mathrm{n}}{ }^{\mathrm{j}}=1 \quad \forall$ large n .

Explaining "almost preservation"

- For $j=1,(1,2, k) \in \mathcal{N} \quad \forall k \geq 2$, since $(1,2) \in \mathcal{P}$ in Wythoff. Thus 2 cannot appear in the list of P-positions of 3pile Wythoff.
- A small set X of integers is excluded.
- How does this affect, if at all, the structure of the complementary sequences?

Two conjectures (F, 1993)

(1) For every fixed $j \geq 1$, \exists integer n_{j} and finite set $X=X^{j} \subset \mathbb{Z}_{\geq 0}$, s.t. $\forall n \geq n_{j r}$

- $A_{n}{ }^{j}=\operatorname{mex}\left(X i \cup\left\{A_{i}^{j}, B_{j}^{j}: 0 \leq i<n\right\}\right)$, $B_{n}{ }^{j}=A_{n}{ }^{j}+n$.
-(2) For every fixed $\mathrm{j} \geq 1, \exists$ integer γ_{j} s.t. $\forall \mathrm{n} \geq \mathrm{n}_{\mathrm{j},}$
- $A_{n} j \in\left\{\lfloor n \tau\rfloor-\gamma_{j}-1,\lfloor n \tau\rfloor-\gamma_{j},\lfloor n \tau\rfloor-\gamma_{j}+1\right\}$,
- For approaching the conjectures, investigated a splitting system perturbed by X:
Recall: $a_{n}=\operatorname{mex}\left\{a_{i}, b_{i}: 0 \leq i<n\right\} n \geq 0$, $b_{n}=a_{n}+n, A=\left\{a_{n}\right\}_{n \geq 1}, B=\left\{b_{n}\right\}_{n \geq 1}$. Then $A=\left\{\lfloor n \tau \mid\}_{n \geq 1}, B=\left\{\left[n \tau^{2}\right]\right\}_{n \geq 1}\right.$.

Let $X \subset \mathbb{Z}_{\geq 1}, X$ finite,
$a_{n}^{\prime}=\operatorname{mex}_{1}\left\{X \cup\left\{a_{i}^{\prime}, b_{i}^{\prime}: n_{0} \leq i<n\right\}\right\}$, $b_{n}^{\prime}=a_{n}^{\prime}+n, n \geq n_{0}$,
$A^{\prime}=\left\{a_{n}^{\prime}\right\}_{n \geq n 0}, B^{\prime}=\left\{b_{n}^{\prime}\right\}_{n \geq n 0}$.
Let $N=\max (X)+1$. Then A^{\prime}, B^{\prime} are
N -upper complementary for some $\mathrm{n}_{0} \geq 1$.
Relate A^{\prime} to $\mathrm{A}, \mathrm{B}^{\prime}$ to B .

Shift sequence: $s_{n}:=a_{n}-a_{n}^{\prime}$

- Theorem (Krieger, F 2004). $\exists \mathrm{p} \in \mathbb{Z}_{\geq 1 \prime}$ $\gamma \in \mathbb{Z}$ s.t. $\forall \mathrm{n} \geq \mathrm{p}$, either $\mathrm{s}_{\mathrm{n}}=\gamma$; or else \forall $\mathrm{n} \geq \mathrm{p}, \mathrm{s}_{\mathrm{n}} \in\{\gamma-1, \gamma, \gamma+1\}$. If the latter then
- s_{n} assumes each of the 3 values infinitely often,
- $\mathrm{S}_{\mathrm{n}} \neq \gamma \Rightarrow \mathrm{S}_{\mathrm{n}-1}=\mathrm{s}_{\mathrm{n}+1}=\gamma$.
- Indices of irregular shifts can be partitioned into K subsets, each of Which satisfies a linear recurrence.

More on the conjectures

- We also proved Conjecture $(1) \Rightarrow$ Conjecture (2).
- Was also proved by Xinyu Sun 2007 with additional results.
- Zeilberger, Sun (2004) proved the 2 conjectures for $m=3$ and $1 \leq j \leq 10$.

Example: $\mathrm{t}=2, n_{0}=6, X=\{1,5\}$.

n	a_{n}	b_{n}	s_{n}	a_{n}^{\prime}	b_{n}^{\prime}
21	21	63	8	29	71
22	22	66	9	31	75
23	23	69	9	32	78
24	25	73	8	33	81
25	26	76	9	35	85
26	28	80	8	36	88
27	29	83	9	38	92
28	31	87	8	39	95
29	32	90	9	41	99
30	34	94	8	42	102
31	35	97	8	43	105
32	37	101	8	45	109
33	38	104	8	46	112
34	40	108	8	48	116
35	41	111	8	49	119

Questions

- What determines the number K of irregular shift sequences s_{n} ?
- For some perturbation sets X get $\gamma_{\mathrm{n}}=\mathrm{n}$ for all n, without getting the additional two values $\gamma_{n}=n-1, \gamma_{n}=n+1$. Characterize those cases.
- Perturbation sets for general Beatty sequences.

Continued

- Same questions for s-fold complementarity and fractional complementarity..

Doron and Xinyu Sun 2004

- Proved the two conjectures for 3 piles and $1 \leq j \leq 10$.
- Thus if you do something for Doron, you get at least a 10 -fold return. Moreover, there is the prospect of an ∞-return.
- They wrote: The method discussed here should be extendable to prove the conjectures for Wythoff's games with more than 3 heaps. A numerical method, instead of the symbolic one presented here, may also be developed to improve the performance...

Doron and Xinyu (contnd)

-...We hope the result presented here would be a stepping-stone for others to finally prove the conjectures, and better yet, to provide a constructive polynomialtime winning strategy for the game.

S-fold complementarity

- Let $\mathbf{s} \in \mathbb{Z}_{\geq 1}$. Cover every positive integer exactly s times.
- Theorem (O’Bryant 2002, Larsson 2010). α irrational and $1 / \alpha+1 / \beta=s$, $\alpha<\beta$. Let

$$
A=\cup_{n \geq s}\{\lfloor n \alpha\rfloor\}, B=\cup_{n \geq 1}\{\lfloor n \beta\rfloor\} .
$$

- Then the sets A, B-split the positive integers: $A \cup B=S \times \mathbb{Z}_{\geq 1}$.

Proof of s-fold Beatty Theorem

- O'Bryant: Generating function, Power series.
- Larsson: Combinatorial.
- Pleasure proof of AMM can be extended easily to s-fold complementarity.

Uspensky 1927, Graham 1963

- $\alpha_{1}, \ldots, \alpha_{m}$ positive real numbers.

Suppose that $\left\lfloor n \alpha_{1}\right\rfloor_{n \geq 1}, \ldots,\left\lfloor n \alpha_{m}\right\rfloor_{n \geq 1}$ split the positive integers. Then $\mathrm{m} \leq 2$.

- Uspensky's proof depends on Kronecker's Theorem on simultaneous diophantine approximation. Graham's is purely combinatorial.

Another Question

- Does Uspensky and Graham's result hold also for s-fold complementarity?
- We (Hegarty, Larsson, F) conjecture that the answer is positive, excepting trivial cases.

A conjecture solved for the integers, irrationals; wide open for the rationals.

- Let $0<\alpha_{1}<\alpha_{2}<\ldots<\alpha_{m}, \gamma_{1}, \ldots, \gamma_{m}$ reals, $\mathrm{m} \geq 3$. If $\cup_{i=1}^{m}\left\lfloor n \alpha_{i}+\gamma_{i}\right\rfloor(n \geq 1)$ is a DCS, then $\alpha_{i}=\left(2^{m}-1\right) / 2^{m-i}, i=1, \ldots, m(F$ 1973).
- Easy to see that
$\cup_{i=1}^{m}\left\lfloor n\left(2^{m}-1\right) / 2^{m-i}\right\rfloor-2^{i-1}+1, i=1, \ldots, m$, $\mathrm{n} \geq 1$, is indeed a DCS. Example: $\mathrm{m}=3$.

$$
U_{i=1}^{m}\left\lfloor n\left(2^{m-1}\right) / 2^{m-i}\right\rfloor-2^{i-1}+1, i=1, \ldots, m, n \geq 1
$$

n	$\lfloor 7 n / 4\rfloor$	$\lfloor 7 n / 2\rfloor-1$	$7 n-3$
1	1	2	4
2	3	6	
3	5		
4	7		
45			

Split with arithmetic sequences

- Evens and odds; evens and numbers $=1 \bmod 4$, numbers=3 mod 4... Theorem. Suppose that $\cup_{i=1}{ }^{m}\left(n a_{i}+b_{i}\right)$, $n \geq 1, m \geq 2$, is a DCS, $0<a_{1} \leq \ldots \leq a_{m}$ integers. Then $\mathrm{a}_{\mathrm{m}-1}=\mathrm{a}_{\mathrm{m}}$.
- Proof. Consider the generating function $\sum_{i=1}{ }^{m} z^{b i} /\left(1-z^{a i}\right)=z /(1-z)$.

Mirsky, Newman, Davenport, Rado

- Proof. $\sum_{i=1}^{m} z^{b i} /\left(1-z^{a i}\right)=z /(1-z)$. Suppose $\mathrm{a}_{\mathrm{m}-1}<\mathrm{a}_{\mathrm{m}}$. Let $\xi=$ primitive a_{m} th root of unity, and let $\mathrm{z} \rightarrow \xi$. (in Erdos 1952). Erdos asked for elementary proof.
- $1^{\text {st }}$ elementary proof: Berger, Felzenbaum, F 1986. Others followed.

Irrational case

- $\alpha>0$ irrational, $1 / \alpha+1 / \beta=1$. Then $\{\lfloor n \alpha\rfloor\}_{n \geq 1}$ and $\{\lfloor n \beta\rfloor\}_{n \geq 1}$ split $\mathbb{Z}_{\geq 1}$. So do $\left.\{\lfloor n \alpha\rfloor\}_{n \geq 1},\{\lfloor(2 n) \beta)\rfloor\right\}_{n \geq 1 \prime}$ $\{\lfloor(2 n-1) \beta\rfloor\}_{n \geq 1}$.
- Graham 1973: All irrational DCS are compositions of integer DCS.
- So 2 moduli are same for $m \geq 3$. ©nly the rational case is left open.
- Erdos \& Graham, 1980. Special cases: F, 1973; Simpson, 1991; Berger, Felzenbaum, F, 1986, Morikawa, 1982, 1985 proved for $\mathrm{m}=3$. Morikawa, 1985, Simpson 2004: "Japanese Remainder Theorem". Simpson, 1991: conjecture true if $\alpha_{1} \leq 3 / 2$. Altman, Gaujal, Hordijk 2000: proved for $\mathrm{m}=4$, using "balanced sequences". Using same method, Tijdeman proved $m=5$, 1998; $m=6$, 2000; Barat, Varju m=7 (2005).
- Using balanced sequences, Tijdeman proved for $m=5,1998 ; m=6,2000$; Barat, Varju for m=7, 2005. Graham O'Bryant, 2005 generalized conjecture to s-covering, used Fourier analysis to prove special cases. Vuillon, 2003; Paquin, Vuillon, 2007.
- Scheduling: Kubiak, 2003; Brauner, Crama, 2004; Brauner, Jost, 2008.

