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To solve a kth order linear recurrence
hn = a1hn−1 + a2hn−2 + · · · + akhn−k (ak != 0),

h(x) = xk − a1x
k−1 − a2x

k−2 − · · ·− ak

If h(x) has  k distinct roots r1, r2, …,rk,

Goal: Prove this combinatorially

then there exist constants c1, c2, …,ck such that 

where c1, c2, …,ck depend on the initial conditions.

hn = c�r
n
�+ c�r

n
�+ · · · + ckrn

k ,



Example: The Fibonacci Recurrence

Fn = Fn−1 + Fn−2

x2 − x− 1 has roots

r1 =
1 +

√
5

2
and r2 =

1−
√

5
2

Thus, Fn = c1( 1+
√

5
2 )n + c2( 1−

√
5

2 )n



Example: The Fibonacci Recurrence

(
F0 = 0, F1 = 1→ c1 =

1√
5
, c2 =

−1√
5

)
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Second Order Linear Recurrences

Suppose h0, h1, h2, … satisfies for n ≥ 2, 
hn = a1hn−1 + a2hn−2 (a2 != 0),

h(x) = x2 − a1x− a2If

has distinct roots r1 and r2,

then there exist constants c1 and c2 such that 

hn = c1r
n
1 + c2r

n
2 .
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Second Order Linear Recurrences

Suppose h0, h1, h2, … satisfies for n ≥ 2, 
hn = a1hn−1 + a2hn−2 (a2 != 0),

What does hn count?

Traditional model: hn counts tilings of length n
using squares and dominoes, where 

squares have a weight of a1 
and dominoes have a weight of a2. 

More colorful model:



We use  two colors of squares:

Light squares have weight r1 

Dominoes have weight –r1r2 –r1r2

Dark squares have weight r2 

r1
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The weight of a tiling is the 
product of the weights of its tiles.
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Dark squares have weight r2 

r1
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The weight of a tiling is the 
product of the weights of its tiles.

Initial tiles get a different weight than the other tiles.



We use  two colors of squares:

Light squares have weight r1 

Dominoes have weight –r1r2 –r1r2

Dark squares have weight r2 

r1

r2

  Initial Weights: 
A square on cell 1 has weight c1r1 or c2r2. 

            A domino on cell 1 has weight  –(c1 + c2)r1r2.  

The constants c1 and c2  will be determined later.
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has weight –c1r14r22 

Example:

c1r1 r2 –r1r2 r1 r1

1 2 3 4 5 6

Let Wn be the total weight of all tilings of length n.

Claim: Wn satisfies the same recurrence as hn.
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Total weight Ends in light square Ends in dark square Ends in domino

Wn = r1Wn−1 + r2Wn−1 − r1r2Wn−2

= (r1 + r2) Wn−1 − r1r2Wn−2
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For n > 2,

Total weight Ends in light square Ends in dark square Ends in domino

Wn = r1Wn−1 + r2Wn−1 − r1r2Wn−2

= (r1 + r2) Wn−1 − r1r2Wn−2

= a1Wn−1 + a2Wn−2

since x2 − a1x− a2 = (x− r1)(x− r2)
= x2 − (r1 + r2)x + r1r2



Combinatorial Proof: 

Thus a tiling has an impurity if it contains 

or or

Definition: A tiling is impure if it contains a domino 
or if it contains two adjacent squares of opposite 
color. 

Wn = c1r
n
1 + c2r

n
2Why does ?
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Impure Tilings Sum to Zero

first impurity

If the tiling does start with an impurity

c1r1 r2 r1 r2 r1 –r1r2 r1 r2 –r1r2

Find a trio that sums to zero!
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Impure Tilings Sum to Zero

If the tiling does start with an impurity

c1r1 r2 r1 r2 r1 –r1r2 r1 r2 –r1r2

c1r1 r2 r1 r2 r1 –r1r2 r1 r2 –r1r2

c1r1 r2 r1 r2 r1 –r1r2 r1 r2 –r1r2



Impure Tilings Sum to Zero

If the tiling does start with an impurity

c1r1 r2 r1 r2 r1 –r1r2 r1 r2 –r1r2

r1 r2 r1 –r1r2 r1 r2 –r1r2

r1 r2 r1 –r1r2 r1 r2 –r1r2



Impure Tilings Sum to Zero

If the tiling does start with an impurity

c1r1 r2 r1 r2 r1 –r1r2 r1 r2 –r1r2

c2r2 r1 r1 r2 r1 –r1r2 r1 r2 –r1r2

–(c1+c2) r1r2 r1 r2 r1 –r1r2 r1 r2 –r1r2



Impure Tilings Sum to Zero

If the tiling does start with an impurity

c1r1 r2 r1 r2 r1 –r1r2 r1 r2 –r1r2

c2r2 r1 r1 r2 r1 –r1r2 r1 r2 –r1r2

–(c1+c2) r1r2 r1 r2 r1 –r1r2 r1 r2 –r1r2

c1r1r2 + c2r2r1 –(c1+c2) r1r2 = 0
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and since the impure tilings sum to zero,

Wn is the total weight of all pure tilings.
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 The pure tilings 
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c2r2 r2 r2 r2 r2 r2

1 2 3 . . n

weight = c1r1n 

weight = c2r2n 

Wn = Total Weight = c1r1n + c2r2n 

☺



Since hn and Wn satisfy the same recurrence, 
they will be equal if they have the same initial 
conditions. Thus, we choose c1 and c2 so that 
W0 = h0 and W1 = h1. 

Thus, we solve
(

1 1
r1 r2

) (
c1

c2

)
=

(
h0

h1

)

Since the matrix has determinant r2 - r1 ≠ 0, there
are unique constants c1 and c2 such that  

hn = Wn = c1r1n + c2r2n 



Third Order Linear Recurrences

Suppose h0, h1, h2, … satisfies for n ≥ 3, 

If

has distinct roots r1, r2, and r3,

then there exist constants c1, c2, and c3 such that 

hn = a1hn−1 + a2hn−2 + a3hn−3 (a3 != 0),

h(x) = x3 − a1x
2 − a2x− a3

hn = c1r
n
1 + c2r

n
2 + c3r

n
3 .
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We use three types of squares:

c1r1 c2r2 c3r3

–(c1+c2)r1r2

We use three types of dominoes:

–(c1+c3) r1r3 –(c2+c3) r2r3

And one type of tromino:

(c1+c2+c3)r1r2r3

Initial tiles get a different weight:



Total weight Ends in a square Ends in a domino Ends in a tromino

Let Wn be the total weight of all n-tilings.
Wn satisfies the same recurrence as hn, since

Wn = (r1 + r2 + r3) Wn−1 − (r1r2 + r1r3 + r2r3)Wn−2 + r1r2r3Wn−3



Total weight Ends in a square Ends in a domino Ends in a tromino

Let Wn be the total weight of all n-tilings.
Wn satisfies the same recurrence as hn, since

Wn = (r1 + r2 + r3) Wn−1 − (r1r2 + r1r3 + r2r3)Wn−2 + r1r2r3Wn−3

= a1Wn−1 + a2Wn−2 + a3Wn−3

since x3 − a1x
2 − a2x− a3 = (x− r1)(x− r2)(x− r3)

= x3 − (r1 + r2 + r3)x2 + (r1r2 + r1r3 + r2r3)x− r1r2r3
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tile with weight not including ri.  

r2 r3
Examples:

–r2r3

–r1r3r2 r1r2r3
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What are the impurities?
Any tile of length 2 or 3.

A square with weight ri or ciri followed by any
tile with weight not including ri.  

r2 r3
Examples:

–r2r3

–r1r3r2 r1r2r3

Non-initial impurities sum to zero!

(if preceded by squares of weight r2)



Initial impurities sum to zero too!

–(c1+c2)r1r2 + c1r1 r2 c2r2+ r1 = 0

(c1+c2+c3)r1r2r3

+

++ c1r1 –r2r3

c2r2 –r1r3 c3r3 –r1r2 = 0



Just 3 pure tilings!



Just 3 pure tilings!

c1r1 r1 r1 r1 r1 r1

1 2 3 . . n



Just 3 pure tilings!

c1r1 r1 r1 r1 r1 r1

1 2 3 . . n

c2r2 r2 r2 r2 r2 r2

1 2 3 . . n



Just 3 pure tilings!

c1r1 r1 r1 r1 r1 r1

1 2 3 . . n

c2r2 r2 r2 r2 r2 r2

1 2 3 . . n

c3r3 r3 r3 r3 r3 r3

1 2 3 . . n



Just 3 pure tilings!

total weight Wn = c1r1n + c2r2n + c3r3n 

c1r1 r1 r1 r1 r1 r1
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Just 3 pure tilings!

total weight Wn = c1r1n + c2r2n + c3r3n 

c1r1 r1 r1 r1 r1 r1

1 2 3 . . n

c2r2 r2 r2 r2 r2 r2

1 2 3 . . n

c3r3 r3 r3 r3 r3 r3

1 2 3 . . n

☺☺
☺



The same proof works for kth order recurrences with 
k distinct roots to its characteristic equation

Square weights: 

Domino weights: 

t-omino weights: 

k-omino weights: 

ri

−rirj

(−1)k+1r1r2 · · · rk

(−1)t+1ri1ri2 · · · rit

1 ≤ i ≤ k

1 ≤ i < j ≤ k



The same proof works for kth order recurrences with 
k distinct roots to its characteristic equation

Initial Square weights: 

Initial Domino weights: 

Initial t-omino weights: 

Initial k-omino weights: 

rici

(c1 + c2 + · · · + ck)(−1)k+1 r1r2 · · · rk

(ci + cj)rirj–

1 ≤ i ≤ k

1 ≤ i < j ≤ k

(ci1 + ci2 + · · · + cit)ri1ri2 · · · rit(−1)t+1



What about Repeated Roots?

If hn has characteristic equation of the form 

(x – r)2

then there exist constants c1 and c2 such that 

hn = c1rn + c2nrn



Repeated Single Root

If hn has characteristic equation of the form 

(x – r)k

then there exist constants c1, c2, …,ck such that 

hn = c1rn + c2nrn + c3n2rn + … + cknk-1rn,

where c1, c2, …,ck depend on the initial conditions.



General Situation

If hn has kth degree characteristic equation of the form 

then there exist constants cij where
1 ≤ i ≤ t and 1 ≤ j ≤ mi  such that

(x− r1)m1(x− r2)m2 · · · (x− rt)mt

hn =
t∑

i=1

mi∑

j=1

cijn
j−1rn

i .

where the values of cij depend on the initial conditions.



General Situation

If hn has kth degree characteristic equation of the form 

then there exist constants cij where
1 ≤ i ≤ t and 1 ≤ j ≤ mi  such that

(x− r1)m1(x− r2)m2 · · · (x− rt)mt

hn =
t∑

i=1

mi∑

j=1

cijn
j−1rn

i .

where the values of cij depend on the initial conditions.

This can also be proved combinatorially!



Repeated Single Root

If hn has characteristic equation of the form 

(x – r)k

then there exist constants c1, c2, …,ck such that 

hn = c1rn + c2nrn + c3n2rn + … + cknk-1rn,

where c1, c2, …,ck depend on the initial conditions.

Tiling Model: Same as before, but with coins added!



First, imagine the k roots are distinct with weights 
r1, r2, …, rk.

Numerically,       r1 =  r2 = … = rk  = r.

Tiles (including initial tiles) get the same weights 
as before. For t = 1, …, k

t-omino weights: (−1)t+1ri1ri2 · · · rit

(ci1 + ci2 + · · · + cit)ri1ri2 · · · rit(−1)t+1

or

If hn has characteristic equation of the form 

(x – r)k



For a given tiling, let m denote the largest index 
to appear anywhere on the tiling.

Then place m – 1 distinct coins on various tiles of 
the tiling (repetition allowed). Coins may only be 
placed on tiles that contain rm as a factor. 

Coins do not affect the weight of the tiling; they 
simply increase the number of tilings. 



c1r1 r1 r3 r2 r1 –r1 r2 r3 r2 –r2 r3

Examples of coined tilings

Here, m = 3, so we must place 2 distinct coins among 
the tiles containing r3 -- the two yellow squares and 

green domino.(9 ways to coin the tiling)
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Examples of coined tilings

Here, m = 3, so we must place 2 distinct coins among 
the tiles containing r3 -- the two yellow squares and 

green domino.(9 ways to coin the tiling)
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Examples of coined tilings
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Here, m = 8, and we must place all 7 distinct coins 
among the first two tiles.(128 ways to coin the tiling)



Examples of coined tilings

–c2c3c5c8 r2 r3 r5 r8 r8 –r1 r2 r3 r2 –r2 r3

Here, m = 8, and we must place all 7 distinct coins 
among the first two tiles.(128 ways to coin the tiling)

–c2c3c5c8 r2 r3 r5 r8 r8 –r1 r2 r3 r2 –r2 r3



Examples of coined tilings

–c2c3c5c8 r2 r3 r5 r8 r8 –r1 r2 r3 r2 –r2 r3

Here, m = 8, and we must place all 7 distinct coins 
among the first two tiles.(128 ways to coin the tiling)

–c2c3c5c8 r2 r3 r5 r8 r8 –r1 r2 r3 r2 –r2 r3

☺☺☺☺☺☺☺
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Examples:

–r2r3
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Same impurities as before
(coins don’t affect purity)

Any tile of length greater than 1.

A square with weight ri or ciri  followed by any
tile with weight not including ri.  

r2 r3
Examples:

–r2r3

–r1r3r2 r1r2r3

☺☺ ☺☺
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Same impurities as before
(coins don’t affect purity)

Any tile of length greater than 1.

A square with weight ri or ciri  followed by any
tile with weight not including ri.  

Non-initial impurities still sum to zero! 
Coins follow the tile containing rm

r2 r3
Examples:

–r2r3

–r1r3r2 r1r2r3

☺☺ ☺☺

☺☺ ☺☺



Initial impurities still sum to zero too!

–(c1+c2)r1r2 + c1r1 r2 c2r2+ r1 = 0

(c1+c2+c3)r1r2r3

+

++ c1r1 –r2r3

c2r2 –r1r3 c3r3 –r1r2 = 0

Coins follow the tile containing rm

☺ ☺ ☺

☺☺

☺☺☺☺

☺☺



 The pure tilings 

c1r1 r1 r1 r1 r1 r1

1 2 3 . . n

c2r2 r2 r2 r2 r2 r2

1 2 3 . . n

m = 1, so it has no coins, and weight = c1r1n 

m = 2, so it has 1 coin 
It can be coined n ways, each with  weight = c2r2n 

and...



 The pure tilings 

c3r3 r3 r3 r3 r3 r3

1 2 3 . . n

ckrk rk rk rk rk rk

1 2 3 . . n

m = 3, so it has 2 coins 
It can be coined n2 ways, each with  weight = c2r2n 

m = k, so it has k-1 coins 
It can be coined nk-1 ways, each with  weight = ckrkn 

and...



Let Cn be the total weight of all coined n-tilings.

Why does Cn satisfies the same recurrence as hn?

This can be proved combinatorially by showing:

The total weight of tilings with any coins on the last tile 
is zero (by considering the last impurity).

So, by considering the last tile, we get * 
Cn = a1Cn-1 + a2Cn-2 + … + akCn-k 

(*Actually, this overcounts, but the total weight of the 
overcounted tilings is shown to be zero.)



Let Cn be the total weight of all coined n-tilings.

Cn satisfies the same recurrence as hn!
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Thus hn = Cn = the total weight of all coined tilings



Let Cn be the total weight of all coined n-tilings.

Cn satisfies the same recurrence as hn!

Thus hn = Cn = the total weight of all coined tilings

So hn = the total weight of all pure coined tilings



Let Cn be the total weight of all coined n-tilings.

Cn satisfies the same recurrence as hn!

Thus hn = Cn = the total weight of all coined tilings

So hn = the total weight of all pure coined tilings

hn = c1r1n + c2n r2n + c3n2 r3n + … + cknk-1rkn 



Let Cn be the total weight of all coined n-tilings.

Cn satisfies the same recurrence as hn!

Thus hn = Cn = the total weight of all coined tilings

So hn = the total weight of all pure coined tilings

hn = c1r1n + c2n r2n + c3n2 r3n + … + cknk-1rkn 

☺



The general situation

can be obtained from the last proof by just finding 
the first root that leads to an impurity.

If hn has kth degree characteristic equation of the form 

then there exist constants cij where
1 ≤ i ≤ t and 1 ≤ j ≤ mi  such that

(x− r1)m1(x− r2)m2 · · · (x− rt)mt

hn =
t∑

i=1

mi∑

j=1

cijn
j−1rn

i .

where the values of cij depend on the initial conditions.





☺

☺☺

☺

☺

☺

☺

☺

☺

☺

☺

☺
☺☺

☺


