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Opinion 60: Still Like That Old Time Blackboard Talk

Opinion 106: Use LARGE FONTS
Opinion 104: “For the good of future mathematics we
need generalists and strategians”
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Standard Terms

A tree is a connected, acyclic graph.
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Standard Terms

A tree is a connected, acyclic graph.

The degree of a vertex v is the number of edges incident
to v.

A leaf is a vertex of degree 1.

The degree sequence of a graph is the multiset of the
degrees of all the vertices, arranged in nonincreasing
order.

Trees have n vertices, and n − k leaves.
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Wiener Index

The Wiener Index W (T ) of a tree with vertex set
{v1, v2, . . . , vn} is given by

W (T ) :=
∑

1≤i<j≤n

d(vi, vj),

where d(vi, vj) is the number of edges in the path from vi to
vj.
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Wiener Index

Introduced by Harry Wiener as the path number w in
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Wiener Index

Introduced by Harry Wiener as the path number w in

“Structural Determination of Paraffin Boiling Points,”
J. Am. Chem. Soc. 69 (1947) 17–20.
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The Problem

Among all trees with given degree sequence

d1 ≥ d2 ≥ · · · ≥ dk > 1 = dk+1 = dk+2 · · · = dn,

find the one(s) with maximal Wiener index.
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Example

d1 = 3, d2 = 2, d3 = 2, d4 = d5 = d6 = 1
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Example

b1 = 2, b2 = 1, b3 = 1
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Definition

A caterpillar is a tree which contains a central path S (the
“spine”) in which every edge is contained in, or incident to, S.
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Theorem

If T is a tree with the maximal Wiener index for a given
degree sequence, then T is a caterpillar.
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Theorem

Let T be a caterpillar with nonleaf spine vertices having
degrees

z1, z2, . . . , zk

in that order.
Then

W (T ) = (n − 1)2 +
∑

1≤i<j≤k

(j − i)(zi − 1)(zj − 1).
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Theorem

Let T be a caterpillar with nonleaf spine vertices having
degrees

1 + y1, 1 + y2, . . . , 1 + yk

in that order.
Then

W (T ) = (n − 1)2 +
∑

1≤i<j≤k

(j − i)yiyj
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The Problem

W (T ) = (n − 1)2 +
∑

1≤i<j≤k

(j − i)yiyj .

Thus we seek a permutation y1, . . . , yk of the b1, . . . , bk which
maximizes

F (y1, y2, . . . , yk) :=
∑

1≤i<j≤k

(j − i)yiyj ,

where bi = di − 1 for all i.
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k = 5

b1 := y1

b2 := y2

b3 := y3

b4 := y4

b5 := y5

b4 := y5

b5 := y4

b3 := y5

b4 := y3

b5 := y4

b4 := y4

b5 := y3

b2 := y5

b3 := y2

b4 := y3

b5 := y4

b4 := y4

b5 := y3

b3 := y4

b4 := y2

b5 := y3

b4 := y3

b5 := y2
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There are 2k−2 “candidate permutations.”
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There are 2k−2 “candidate permutations.”

They have a natural binary encoding from 0 to 2k−2 − 1,

Let Pj denote the evaluation of F (y1, y2, . . . , yk),

e.g. in the case k = 5, we have
P101 = P5 = F (b1, b3, b5, b4, b2)
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P101 = P5 = F (b1, b3, b5, b4, b2)
b1 := y1

b2 := y2

b3 := y3

b4 := y4

b5 := y5

P000

b4 := y5

b5 := y4

P001

b3 := y5

b4 := y3

b5 := y4

P010

b4 := y4

b5 := y3

P011

b2 := y5

b3 := y2

b4 := y3

b5 := y4

P100

b4 := y4

b5 := y3

P101

b3 := y4

b4 := y2

b5 := y3

P110

b4 := y3

b5 := y2

P111
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Opinion 74

Use high school algebra!
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Observations

Many candidates can be “weeded out” from
consideration easily via “adjacent comparisons,” e.g.

P1 − P0 = (b1 + b2 + · · · + bk−2)(bk−1 − bk) ≥ 0

P2 − P1 = 2(b1 + b2 + · · · + bk−3)(bk−2 − bk−1) ≥ 0
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The initial weed out is a subset of
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3
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Observations

Many candidates can be “weeded out” from
consideration easily via “adjacent comparisons,” e.g.

P1 − P0 = (b1 + b2 + · · · + bk−2)(bk−1 − bk) ≥ 0

P2 − P1 = 2(b1 + b2 + · · · + bk−3)(bk−2 − bk−1) ≥ 0

The initial weed out is a subset of

{P0, P1, P2, . . . , P⌊ 2

3
·2k−2⌋}

. . . of cardinality
(

k − 2

⌊k−2

2
⌋

)

+

(

k − 3

⌊k−2

2
⌋

)

.
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Observations

{⌊2

3
· 2k−2⌋} is A000975 in OEIS.
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Observations

{⌊2

3
· 2k−2⌋} is A000975 in OEIS.

{
(

k−2

⌊ k−2

2
⌋

)

+
(

k−3

⌊ k−2

2
⌋

)

} is A050168.
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Observations

{⌊2

3
· 2k−2⌋} is A000975 in OEIS.

{
(

k−2

⌊ k−2

2
⌋

)

+
(

k−3

⌊ k−2

2
⌋

)

} is A050168.

Thank you, Neil Sloane!

All I Really Need To Know,I Learned From Dr. Z – p. 20/27



Observations

Sometimes nonadjacent entries in the bottom of the binary
tree also factor and lead to a “secondary weed out,” e.g.

P11 − P7 = 2(bk−4 − bk−3)(2b1 + 2b2 + · · · + 2bk−5 − bk−2 + bk) ≥ 0.
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Maximality Characterizations For Small k
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Zhang, Liu and Han (2009)

All I Really Need To Know,I Learned From Dr. Z – p. 22/27



Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

k = 4: P11 is always maximal.
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Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

k = 4: P11 is always maximal.

k = 5:
P111 is uniquely maximal if b1 − b2 − b3 > 0.
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Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

k = 4: P11 is always maximal.

k = 5:
P111 is uniquely maximal if b1 − b2 − b3 > 0.
P110 is uniquely maximal if b1 − b2 − b3 < 0.
P110 and P111 tie for maximality if b1 − b2 − b3 = 0.
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Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

k = 4: P11 is always maximal.

k = 5:
P111 is uniquely maximal if b1 − b2 − b3 > 0.
P110 is uniquely maximal if b1 − b2 − b3 < 0.
P110 and P111 tie for maximality if b1 − b2 − b3 = 0.

k = 6: 11 cases.
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Maximality Characterizations for Small k

P1111 is uniquely maximal if b1 − b2 − b3 − b4 > 0.

P1111 and P1110 tie for maximality if b1 − b2 − b3 − b4 = 0.

P1110 is uniquely maximal if b1 − b2 − b3 − b4 < 0 and b1 − b2 − b3 > 0.

P1110 and P1101 tie for maximality if b1 − b2 − b3 = 0.

P1101 is uniquely maximal if b1 − b2 − b3 < 0 and b1 − b2 − b3 + b4 > 0 and
3b1 − 3b2 − b5 + b6 > 0.

P1101 and P1100 tie for maximality if b1 − b2 − b3 = 0 and 3b1 − 3b2 − b5 + b6 > 0.

P1101 and P1011 tie for maximiality if 3b1 − 3b2 − b5 + b6 = 0 and b1 − b2 − b3 + b4 > 0.

P1101, P1100, and P1011 are in a three-way tie for maximality if 3b1 − 3b2 − b5 + b6 = 0 and
b1 − b2 − b3 + b4 = 0.
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Maximality Characterizations for Small k

P1100 is uniquely maximal if 3b1 − 3b2 − b5 + b6 ≥ 0 and b1 − b2 − b3 + b4 < 0; or if
3b1 − 3b2 − b5 + b6 ≤ 0 and 3b3 − b4 − b5 + b6 > 0.

P1011 is uniquely maximal if b1 − b2 − b3 + b4 ≥ 0 and 3b1 − 3b2 − b5 + b6 < 0.

P1011 and P1100 tie for maximality if 3b1 − 3b2 − b5 + b6 < 0 and 3b3 − 3b4 − b5 + b6 = 0.
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Maximality Characterizations For Small k

For k = 7 there are 1312 cases.

All I Really Need To Know,I Learned From Dr. Z – p. 25/27



Conjectures and Questions

For k < 9, the initial and secondary weed out show that
the optimal permutation cannot be on the left side of the
binary tree.
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Conjectures and Questions

For k < 9, the initial and secondary weed out show that
the optimal permutation cannot be on the left side of the
binary tree.

For k ≥ 9, can there be an optimal permutation on the
left side, i.e. where b2 = y2?
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Happy Birthday, Doron!
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