All I Really Need To Know, I Learned From Dr. Z

Andrew Sills

Georgia Southern University

- Opinion 60: Still Like That Old Time Blackboard Talk
- Opinion 60: Still Like That Old Time Blackboard Talk - Opinion 106: Use LARGE FONTS
- Opinion 60: Still Like That Old Time Blackboard Talk - Opinion 106: Use LARGE FONTS
- Opinion 104: "For the good of future mathematics we need generalists and strategians"

Joint Work with HUA WANG

Standard Terms

- A tree is a connected, acyclic graph.

Standard Terms

- A tree is a connected, acyclic graph.
- The degree of a vertex v is the number of edges incident to v.

Standard Terms

- A tree is a connected, acyclic graph.
- The degree of a vertex v is the number of edges incident to v.
- A leaf is a vertex of degree 1 .

Standard Terms

- A tree is a connected, acyclic graph.
- The degree of a vertex v is the number of edges incident to v.
- A leaf is a vertex of degree 1 .
- The degree sequence of a graph is the multiset of the degrees of all the vertices, arranged in nonincreasing order.

Standard Terms

- A tree is a connected, acyclic graph.
- The degree of a vertex v is the number of edges incident to v.
- A leaf is a vertex of degree 1 .
- The degree sequence of a graph is the multiset of the degrees of all the vertices, arranged in nonincreasing order.
- Trees have n vertices, and $n-k$ leaves.

Wiener Index

The Wiener Index $W(T)$ of a tree with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is given by

$$
W(T):=\sum_{1 \leq i<j \leq n} d\left(v_{i}, v_{j}\right),
$$

where $d\left(v_{i}, v_{j}\right)$ is the number of edges in the path from v_{i} to v_{j}.

Wiener Index

Introduced by Harry Wiener as the path number w in

Wiener Index

Introduced by Harry Wiener as the path number w in "Structural Determination of Paraffin Boiling Points," J. Am. Chem. Soc. 69 (1947) 17-20.

The Problem

Among all trees with given degree sequence

$$
d_{1} \geq d_{2} \geq \cdots \geq d_{k}>1=d_{k+1}=d_{k+2} \cdots=d_{n}
$$

find the one(s) with maximal Wiener index.

Example

$$
d_{1}=3, d_{2}=2, d_{3}=2, d_{4}=d_{5}=d_{6}=1
$$

Example

$$
d_{1}=3, d_{2}=2, d_{3}=2, d_{4}=d_{5}=d_{6}=1
$$

Example

$$
d_{1}=3, d_{2}=2, d_{3}=2, d_{4}=d_{5}=d_{6}=1
$$

?

Example

$$
d_{1}=3, d_{2}=2, d_{3}=2, d_{4}=d_{5}=d_{6}=1
$$

31

Example

$$
d_{1}=3, d_{2}=2, d_{3}=2, d_{4}=d_{5}=d_{6}=1
$$

2	1
	,
13	3
$\widehat{2}$	2
\|	1
1	2
	\|
	1
31	32

Example

$$
b_{1}=2, b_{2}=1, b_{3}=1
$$

Definition

A caterpillar is a tree which contains a central path S (the "spine") in which every edge is contained in, or incident to, S.

Theorem

If T is a tree with the maximal Wiener index for a given degree sequence, then T is a caterpillar.

Theorem

Let T be a caterpillar with nonleaf spine vertices having degrees

$$
z_{1}, z_{2}, \ldots, z_{k}
$$

in that order.
Then

$$
W(T)=(n-1)^{2}+\sum_{1 \leq i<j \leq k}(j-i)\left(z_{i}-1\right)\left(z_{j}-1\right) .
$$

Theorem

Let T be a caterpillar with nonleaf spine vertices having degrees

$$
1+y_{1}, 1+y_{2}, \ldots, 1+y_{k}
$$

in that order.
Then

$$
W(T)=(n-1)^{2}+\sum_{1 \leq i<j \leq k}(j-i) y_{i} y_{j}
$$

The Problem

$$
W(T)=(n-1)^{2}+\sum_{1 \leq i<j \leq k}(j-i) y_{i} y_{j} .
$$

Thus we seek a permutation y_{1}, \ldots, y_{k} of the b_{1}, \ldots, b_{k} which maximizes

$$
F\left(y_{1}, y_{2}, \ldots, y_{k}\right):=\sum_{1 \leq i<j \leq k}(j-i) y_{i} y_{j},
$$

where $b_{i}=d_{i}-1$ for all i.

$k=5$

- There are 2^{k-2} "candidate permutations."
- There are 2^{k-2} "candidate permutations."
- They have a natural binary encoding from 0 to $2^{k-2}-1$,
- There are 2^{k-2} "candidate permutations."
- They have a natural binary encoding from 0 to $2^{k-2}-1$,
- Let P_{j} denote the evaluation of $F\left(y_{1}, y_{2}, \ldots, y_{k}\right)$,
- There are 2^{k-2} "candidate permutations."
- They have a natural binary encoding from 0 to $2^{k-2}-1$,
- Let P_{j} denote the evaluation of $F\left(y_{1}, y_{2}, \ldots, y_{k}\right)$, e.g. in the case $k=5$, we have $P_{101}=P_{5}=F\left(b_{1}, b_{3}, b_{5}, b_{4}, b_{2}\right)$

Opinion 74

Use high school algebra!

Observations

- Many candidates can be "weeded out" from consideration easily via "adjacent comparisons," e.g.

$$
\begin{gathered}
P_{1}-P_{0}=\left(b_{1}+b_{2}+\cdots+b_{k-2}\right)\left(b_{k-1}-b_{k}\right) \geq 0 \\
P_{2}-P_{1}=2\left(b_{1}+b_{2}+\cdots+b_{k-3}\right)\left(b_{k-2}-b_{k-1}\right) \geq 0
\end{gathered}
$$

Observations

- Many candidates can be "weeded out" from consideration easily via "adjacent comparisons," e.g.

$$
\begin{gathered}
P_{1}-P_{0}=\left(b_{1}+b_{2}+\cdots+b_{k-2}\right)\left(b_{k-1}-b_{k}\right) \geq 0 \\
P_{2}-P_{1}=2\left(b_{1}+b_{2}+\cdots+b_{k-3}\right)\left(b_{k-2}-b_{k-1}\right) \geq 0
\end{gathered}
$$

- The initial weed out is a subset of

$$
\left\{P_{0}, P_{1}, P_{2}, \ldots, P_{\left\lfloor\frac{2}{3} \cdot 2^{k-2}\right\rfloor}\right\}
$$

Observations

- Many candidates can be "weeded out" from consideration easily via "adjacent comparisons," e.g.

$$
\begin{gathered}
P_{1}-P_{0}=\left(b_{1}+b_{2}+\cdots+b_{k-2}\right)\left(b_{k-1}-b_{k}\right) \geq 0 \\
P_{2}-P_{1}=2\left(b_{1}+b_{2}+\cdots+b_{k-3}\right)\left(b_{k-2}-b_{k-1}\right) \geq 0
\end{gathered}
$$

- The initial weed out is a subset of

$$
\left\{P_{0}, P_{1}, P_{2}, \ldots, P_{\left\lfloor\frac{2}{3} \cdot 2^{k-2}\right\rfloor}\right\}
$$

... of cardinality

$$
\binom{k-2}{\left\lfloor\frac{k-2}{2}\right\rfloor}+\binom{k-3}{\left\lfloor\frac{k-2}{2}\right\rfloor} .
$$

Observations

- $\left\{\left\lfloor\frac{2}{3} \cdot 2^{k-2}\right\rfloor\right\}$ is A000975 in OEIS.

Observations

- $\left\{\left\lfloor\frac{2}{3} \cdot 2^{k-2}\right\rfloor\right\}$ is A000975 in OEIS.
- $\left.\left.\left\{\left(\begin{array}{c}k-2 \\ \frac{-2}{2}\end{array}\right]\right)+\left(\begin{array}{c}k-3 \\ {\left[\frac{k-3}{2}\right.}\end{array}\right]\right)\right\}$ is A050168.

Observations

- $\left\{\left\lfloor\frac{2}{3} \cdot 2^{k-2}\right\rfloor\right\}$ is A000975 in OEIS.
- $\left\{\binom{k-2}{\left[\frac{-2}{2}\right.}+\left(\begin{array}{c}k-3 \\ {\left[\frac{k-3}{2}\right.}\end{array}\right]\right\}$ is A050168.

Thank you, Neil Sloane!

Observations

Sometimes nonadjacent entries in the bottom of the binary tree also factor and lead to a "secondary weed out," e.g.
$P_{11}-P_{7}=2\left(b_{k-4}-b_{k-3}\right)\left(2 b_{1}+2 b_{2}+\cdots+2 b_{k-5}-b_{k-2}+b_{k}\right) \geq 0$.

Maximality Characterizations For Small k

Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

- $k=4: P_{11}$ is always maximal.

Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

- $k=4: P_{11}$ is always maximal.
- $k=5$:

Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

- $k=4: P_{11}$ is always maximal.
- $k=5$:
- P_{111} is uniquely maximal if $b_{1}-b_{2}-b_{3}>0$.

Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

- $k=4: P_{11}$ is always maximal.
- $k=5$:
- P_{111} is uniquely maximal if $b_{1}-b_{2}-b_{3}>0$.
- P_{110} is uniquely maximal if $b_{1}-b_{2}-b_{3}<0$.

Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

- $k=4: P_{11}$ is always maximal.
- $k=5$:
- P_{111} is uniquely maximal if $b_{1}-b_{2}-b_{3}>0$.
- P_{110} is uniquely maximal if $b_{1}-b_{2}-b_{3}<0$.
- P_{110} and P_{111} tie for maximality if $b_{1}-b_{2}-b_{3}=0$.

Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

- $k=4: P_{11}$ is always maximal.
- $k=5$:
- P_{111} is uniquely maximal if $b_{1}-b_{2}-b_{3}>0$.
- P_{110} is uniquely maximal if $b_{1}-b_{2}-b_{3}<0$.
- P_{110} and P_{111} tie for maximality if $b_{1}-b_{2}-b_{3}=0$.
- $k=6$: 11 cases.

Maximality Characterizations for Small k

- P_{1111} is uniquely maximal if $b_{1}-b_{2}-b_{3}-b_{4}>0$.
- P_{1111} and P_{1110} tie for maximality if $b_{1}-b_{2}-b_{3}-b_{4}=0$.
- P_{1110} is uniquely maximal if $b_{1}-b_{2}-b_{3}-b_{4}<0$ and $b_{1}-b_{2}-b_{3}>0$.
- $\quad P_{1110}$ and P_{1101} tie for maximality if $b_{1}-b_{2}-b_{3}=0$.
- P_{1101} is uniquely maximal if $b_{1}-b_{2}-b_{3}<0$ and $b_{1}-b_{2}-b_{3}+b_{4}>0$ and $3 b_{1}-3 b_{2}-b_{5}+b_{6}>0$.
- P_{1101} and P_{1100} tie for maximality if $b_{1}-b_{2}-b_{3}=0$ and $3 b_{1}-3 b_{2}-b_{5}+b_{6}>0$.
- P_{1101} and P_{1011} tie for maximiality if $3 b_{1}-3 b_{2}-b_{5}+b_{6}=0$ and $b_{1}-b_{2}-b_{3}+b_{4}>0$.
- P_{1101}, P_{1100}, and P_{1011} are in a three-way tie for maximality if $3 b_{1}-3 b_{2}-b_{5}+b_{6}=0$ and $b_{1}-b_{2}-b_{3}+b_{4}=0$.

Maximality Characterizations for Small k

- P_{1100} is uniquely maximal if $3 b_{1}-3 b_{2}-b_{5}+b_{6} \geq 0$ and $b_{1}-b_{2}-b_{3}+b_{4}<0$; or if $3 b_{1}-3 b_{2}-b_{5}+b_{6} \leq 0$ and $3 b_{3}-b_{4}-b_{5}+b_{6}>0$.
- P_{1011} is uniquely maximal if $b_{1}-b_{2}-b_{3}+b_{4} \geq 0$ and $3 b_{1}-3 b_{2}-b_{5}+b_{6}<0$.
- P_{1011} and P_{1100} tie for maximality if $3 b_{1}-3 b_{2}-b_{5}+b_{6}<0$ and $3 b_{3}-3 b_{4}-b_{5}+b_{6}=0$.

Maximality Characterizations For Small k

For $k=7$ there are 1312 cases.

Conjectures and Questions

- For $k<9$, the initial and secondary weed out show that the optimal permutation cannot be on the left side of the binary tree.

Conjectures and Questions

- For $k<9$, the initial and secondary weed out show that the optimal permutation cannot be on the left side of the binary tree.
- For $k \geq 9$, can there be an optimal permutation on the left side, i.e. where $b_{2}=y_{2}$?

Happy Birthday, Doron!

