
NOTES AND EXERCISES, MARTINGALES, MATH 642:592, Spring 2008

The material covered in lectures 2, 3, and 4 on conditional expectation and discrete time
martingales is standard and may be found in RW, Volume I. Therefore, we mainly summarize
here and give intuition, so that the student may get an overview of the main results. Similar
ground is covered, but less efficiently because of many applications to Markov chains and
large number laws, in chapter 6 of O.

1. Conditional Expectation

(a) A Special Case. We begin with a special case which is easy to understand and contains
all the intuition. Remember that events typically come in σ-algebra bundles in prob-
ability theory. The simplest class of examples are σ-algebras generated by a disjoint
partition, {A1, A2, . . .}, of Ω into events Ai ∈ F . This σ-algebra is easily described; it
is the collection of all unions, necessarily countable, of events of the partition, plus the
empty set. For this discussion, suppose the partition {A1, A2, . . .} is fixed and denote
the associate σ-algebra by A. Any A measurable random variable takes the form

X(ω) =
∞∑
1

ci1Ai(ω).

Conversely, if the ci’s are all distinct, σ{X} (the salgebra generated by X) is equal to
A.

Let us suppose now that P(Ai) > 0 for each i. Let X be an integrable random variable.
In elementary probability theory the conditional expecation of X given Ai is defined
by

E [X | Ai]
4
=
E [X1Ai ]

IP (Ai)
,

and is interpreted as the expectation of X given that we know event Ai has occured,
but nothing more. If you take a frequentist approach to probability, the justification
for this interpretation comes from the law of large numbers. Imagine a sequence of
successive trials of the experiment modeled by the probability space (Ω,F ,P), each
trial being independent of the others. If we keep a running average of the values of X
observed each time Ai occurs, this average will converge almost surely to E [X | Ai] as
the number of trials increases towards infinity.

In advanced probability, we define the conditional expectation of X given the σ-algebra
A as the random variable

E [X | A] (ω)
4
=
∞∑
1

E [X | Ai] 1Ai(ω). (1)
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The idea is that we are analyzing an experiment producing a point ω, we are told
only which Ai the outcome ω falls in, and we want to calculate the conditional ex-
pectation of X given that outcome. This will be a random variable depending on the
outcome. Viewing conditional expectations as random variables allows us to discuss
the conditional relationships between different random occurences.

The following lemma is easily verified and gives us an alternative way to think about
what a conditional expectation does.

Lemma 1 Let A be the σ-algebra generated by a countable disjoint partition into
events of positive probability. Let E [|X|] < ∞. Then E [X | A] is the unique ran-
dom variable Z satisfying

(i) Z is A-measurable.

(ii) E [1AX] = E [1AZ] for every A ∈ A.

Exercise 1. Prove this lemma.

This Lemma is extremely important. Property (ii) is one of the principal uses of
conditional expection, and it is the basis for generalizing the definition of conditional
expectation to any σ-algebra.

(b) The general definition. We will extend the definition of conditional expectation to
general σ-algebras. The restriction of the probability measure P to G will be denoted
by P |G. Given a random variable X, let X+ = X1{X≥0} and X− = −X1{X<0} be its
positive and negative parts. We say that X is extended integrable if at most one of

E [X+] and E [X−] is infinite. In this case, λX(A)
4
= E [1AX] defines a σ-finite signed

measure on (Ω,F ,P). Note that this measure assign infinite values to a set.

Theorem 1 (and Definition) Let G be a σ-algebra contained in F . Let X be a
random variable. Assume that λX(A) = E [1AX] defines a σ-finite signed measure
on (Ω,G,P |G). (Signed meaures are defined in the lecture 1 notes.) There exists an
extended integrable random variable Z such that

(i) Z is G-measurable.

(ii) E [1AX] = E [1AZ] for every A ∈ A.

This Z is unique up to sets of probability 0; that is, if Z ′ is a second random variable
that satisfies (i) and (ii), then P(Z ′ = Z) = 0. E [X | G] is used to denote a version
of Z and is called the conditional expectation of X given G. A sufficient condition for
λX(A) to define a signed measure on (Ω,G,P |G) is that X be extended integrable.
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Remarks: 1. In class, we defined conditional expectation under the assumption that
X be integrable, but this is not necessary. For example, the conditional expectation is
defined for any positive random variable. Remember that we allow random variables
to take values in the extended reals.

2. The proof is just to observe that λX is absolutely continuous with respect to P |G
on (Ω,G,P |G), P |G being the restriction of P to G. Then apply the Radon-Nikodym
theorem; we stated this only for bounded signed measures in the lecture notes, but it
is true for any signed measure (see the exercise 2 below). It provides a G measurable
random variable Z satisfying λX(A) = E [1AZ] for A ∈ G and so Z automatically
satisfies (ii). Note that by this construction of Z, if X is extended integrable

E [X | G] = E
[
X+ | G

]
− E

[
X− | G

]
.

(c) Let X be a random variable. Recall that σ{X} is the smallest σ-algebra with respect
to which X is measurable; it is the collection of all events of the form {ω;X(ω) ∈ U},
where U is a Borel subset of R. Similarly σ{X1, . . . , Xn} is the σ-algebra of all events
of the form {ω; (X1(ω), . . . , Xn(ω)) ∈ U}, where U is a Borel subset of Rn. We define

E [Y | X1, . . . , Xn]
4
= E [Y | σ{X1, . . . , Xn}] .

(d) The basic properties of conditional expectation are all listed in RW. We restate here
just three of them that are especially important.

The tower property. Suppose that G ⊂ H, then if X is extended integrable

E [E [X | H] | G] = E [X | G] .

Factoring property. This says that if Y is G measurable, then

E [Y X | G] = Y E [X | G] a.s.

To be rigorous this needs assumptions. Thus usual statement assumes that both X
and Y X are integrable. This can be relaxed.

Conditional Jensen inequality Let φ be a convex function and suppose that X and
φ(X) are both integrable, then

φ (E [X | G]) ≤ E [φ(X) | G] .
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• (e) Exercises

Exercise 2. Prove the Tower property. To simplify, you can restrict to the case that X is
integrable. This is a good exercise in applying the definition of conditional expectation
and you should certainly do it if you are new to this definition.

Exercise 3. This exercise help connect our general definition of conditional expectation
to that we learn in elementary probability. Let (X,Y ) have the joint probability density
function f(x, y) (thus P ((X, Y ) ∈ U) =

∫ ∫
U f(x, y) dxdy for any Borel U ⊂ R2.) Let

fX(x) be the density of X. In elementary probability theory we define

E [Y | X=x]
4
=
∫
R

y
f(x, y)

FX(x)
dy · 1{fX(x)>0}

This is a function of x and for temporary convenience, call it ψ(x). Show that ψ(X)
is in fact E [Y | X].

Exercise 4. Do at least (a)-(d) if you are not yet that familiar with conditioning)

(a) Prove the factor property when Y is a simple G-measurable random variable, that
is, Y =

∑M
1 ci1Ai , where each Ai belongs to G.

(b) Prove that when X is non-negative, so is E [X | G] (this actually follows from the
Radon-Nikodym theorem construction, but can be proved directly). Prove also that
|E [X | G] | ≤ E [|X| | G].

(c) Prove that factor property if X and Y are non-negative random variables. Hint:
use a sequence of simple G-measurable random variables Yn such that Yn ↑ Y and the
monotone convergence theorem.

(d) Prove the factor property when X and XY are integrable. (Note that using (b)
and (c) |Y ||E [X | G] | is integrable. Use simple functions converging to Y such that
|Yn| ≤ Y for all n.)

(e) Show that the factor property is true if Y is a non-negative or nonpositive random
variable and X and Y X are extended integrable. Show that it is true if X is positive
or negative and Y X is extended integrable. Is it true if both X and Y X are assumed
to be extended integrable?

(f) Let φ be convex and assume that X is extended integrable and E [X] > −∞, then
φ(X) is extended integrable and E [φ(X)] > −∞. Is conditional Jensen still true?

Exercise 5. (This is optional. A full discussion/solution may be found in Folland,
Real Analysis: Modern Techniques and their Application, John-Wiley.) Extending the
Radon-Nikodym theorem on a probability space to arbitrary signed measures. (The
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theorem extend also to the case when the probability measure P is replaced by a σ-finite
measure, as defined in this exercise.)

A signed measure or measure λ on (Ω,F) is σ-finite if there is a countable disjoint
partition of Ω into events An such that |λ|(An) < ∞ for every n. (a) First extend
the Radon-Nikodym theorem stated in Lecture 1 to σ-finite λ. It suffices to treat
the case that λ is positive, because the Jordan decomposition implies that λ can be
written as λ+ − λ−, where λ+ and λ− are mutually singular, postive measures, one of
which is finite and the other σ-finite. (remember that by definition a signed measure
cannot take on both −∞ and ∞ as values.) Then let {An} be a partition such that
λ(An) < ∞ for each n and apply the Radon-Nikodym theorem for the bounded case
on each An. (b) Now extend to the arbitrary, signed measure case. Again it suffices to
prove the result when λ is positive. In this case, show there is an A ∈ F on which λ is
σ-finite and such that P(B) ≤ P(A) for all events B on which λ is σ-finite. Apply the
Radon-Nikodym theorem for the σ-finite case on A. If C is an event disjoint from A,
either λ(A) = P(A) = 0 or P(C) > 0 and λ(F ) = ∞. Use this to complete the proof
of existence. Prove almost-sure uniqueness.

2. Martingales in discrete time; definition

(a) Filtrations: A filtration F is an increasing family of σ-algebras, F0 ⊂ F1 ⊂ F2 · · ·. The
members of the family are always assumed to be contained in the σ-algebra F of the
base probability space.

We shall think of Fn as the σ-algebra of events that can happen up to time n; specifi-
cally, at time n, we “know” Fn if for evey A ∈ Fn, we can say whether ω, the outcome
of the experiment modeled by (Ω,F ,P), belongs to An or not.

A nice and simple example to keep in mind as we go along is to let each Fn is the
σ-algebra associated to a countable partition of Ω. This will be a filtration if each
partition is a refinement of the preceding partition. If Fn represents what is known at
time n, then we know at each time n which event of the partition ω is in, and so we
are thus getting a more and more refined idea of the location of ω as time passes. For
a concrete example, let Ω = (0, 1] and let Fn be the partition defined by the intervals
((k−1)/2n, k/2n], 1 ≤ k ≤ 2n.

Important definition: A stochastics process {Xn}n≥0 is adapted to the filtration F
(or is F-adapted) if Xn is Fn-measurable for all n ≥ 0. Intuitively, this means that the
value of Xn is recorded in the information represented by Fn.

(b) Martingales. Martingales, submartingales, and supermartingales are models, imposing
the minimal assumptions that correspond to fair, favorable, and unfavorable games,
respectively.
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Definition. A (discrete-time) F-martingale (or martingale with respect to F) is a ran-
dom process {Xn}n≥0 satisfying:

(i) E [|Xn|] <∞ for all n ≥ 0;

(ii) {Xn}n≥0 is F-adapted;

(iii) For each n ≥ 0, E [Xn+1 | Fn] = Xn, almost-surely, for all n.

{Xn}n≥0 is an F-submartingale if instead of (iii), E [Xn+1 | Fn] ≥ Xn, a.s, for all n; it is
a supermartingale if instead E [Xn+1 | Fn] ≤ Xn, a.s., for all n. Of course, a martingale
is both a submartingale and a martingale.

When the filtration is clear, we usually omit refering to the filtration in specifying that
a process is a martingale.

It is helpful for intuition to think of Xn as ones current fortune in a game of chance in
which a dollar is bet on each play; the increment Xn−Xn−1 is the amount won or lost
on play n; X0 is the initial amount of money we start with. The conditional increment
E [Xn −Xn−1 | Fn−1] = E [Xn | Fn−1] − Xn−1 is what we expect to win or lose given
everything we know before play n.

Exercise 6. This is a simple exercise using the tower property of conditional expecta-
tion. Let {Xn} be an F-martingale (sub- or supermartingale). Let Gn = σ{X0, X1, . . . , Xn}.
Then {Xn} is a {Gn}-martingale (sub- or supermartingale).

Examples. (a) Mean zero random walks. Let ξ1, ξ2, . . . be independent, integrable ran-
dom variables with 0 mean. Let F0 = {∅,Ω}, and, for n ≥ 1, let Fn = σ{ξ1, ξ2, . . . , ξn}.
Then

Xn
4
==

{
0, if n = 0;∑n

1 ξi, if n ≥ 1.

defines an F-martingale.

(b) ”Geometric” random walks. Let ξ1, ξ2, . . . be independent, identically distributed
random variables, and let F be the filtration they generate, as defined in the previous
example. Assume that there is an s 6= 0, such that the moment generating function
M(s) = E

[
esξi

]
is finite at s. Define X0 = 1 and for n ≥ 1,

Xn =
exp{∑n

1 ξi}
Mn(s)

This is a martingale. If the ξi’s are normal with mean µ and variance σ2, M(s) =
eµs+σ

2s/2 and

Xn = exp{
n∑
1

(ξi − µ)− nσ2/2}.
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(c) Let φ be a convex function and let {Xn} be an F-martingale. Then {φ(Xn)} is
a F-submartingale. If {Xn} is a submartingale and φ is increasing and convex, then
{φ(Xn)} is a submartingale. These facts follow from application of the conditional
Jensen’s inequality.

(d) Let Z be an integrable random variable and let F be a filtration. Define Xn =
E [Z | Fn], for each n ≥ 0. Then {Xn} is a martingale with respect to F. If we append
∞ to the index set {0, 1, . . .} as a last index, bigger than all the rest, and define

F∞ = σ (∪iFi) and X∞
4
= E [Z | F∞], we can think of {Xn}0≤1≤∞ as a martingale on

the extended index set.

(e) Let F be a filtration and let {Yn} be adapted to F and assume all its terms are
integrable. Then, X0 = Y0 and

Xn = Y0 +
n∑
1

[Yk − E [Yk | Fk−1]]

defines a martingale. In this very important construction, we are just subtracting
the conditional mean of each next value given the past. Therefore the conditional
expectation of each forward increment given the past, namely

E [Xn+1 −Xn | Fn] = E [Yn+1 − E [Yn | Fn] | Fn] = 0.

3. Martingale integrals in discrete time. Given two processes {Xn}n≥1 and h := {hn}n≥1,
define

(h.X)n =
n∑
1

hk [Xk −Xk−1]

Let (h.X)0 = 0. This is called the discrete time integral of h with respect to {Xn}. If {Xn}
is interpreted as the fortune after n plays of a game on which a dollar is bet on each play,
then (h.X)n is the total gain in n plays if, instead, hk dollars is bet on play k for each k.

Let F be a filtration. A process {hn}n≥1 is called F-predictable if hn is Fn−1-measurable
for each n. If {hn}n≥1 is thought of as a betting strategy and Fn the information available
by the end of play n, predictability means that the money we bet on play n can depend
only on the information we have up to play n − 1 for all n. It is a condition that forbids
clairvoyance.

If we are betting predictably on a martingale, we should not expect that we can create a
betting strategy that makes the game favorable to us. This idea is captured in the following
fundamental result, which is summarized in RW as “you can’t beat the system.”

Theorem 2 (a) If {Xn} is an F-martingale, if {hn} is F-predictable, and if hn is bounded for
each n (there exists Kn <∞ such that |hn| ≤ Kn, a.s.), then {(h.X)n} is also a martingale
with respect to F.
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(b) If {Xn} is an F-submartingale, if {hn} is F-predictable, non-negative, and if hn is
bounded for each n, then {(h.X)n} is also a submartingale. Moreover, if 0 ≤ Hk ≤ K for
all k ≤ n, E [(h.X)n] ≤ KE [Xn −X0].

The predictability is key in this theorem. Consider the proof of (a). It is easy to show that
{(h.X)n} is adapted to F and that (h.X)n is integrable for each n. To show the martingale
property, we use the factoring property of conditional expectation. Since hn+1 is bounded
and Fn-measurable,

E [(h.X)n+1 − (h.X)n | Fn] = E [hn+1 (Xn+1 −Xn) | Fn] = hn+1E [Xn+1 −Xn | Fn] = 0.

The proof of (b) is similar. To prove the last statement of (b), one must use that
E [(Xk+1 −Xk) | Fk] ≥ 0, and, if 0 ≤ hk ≤ K,

E [hk+1 (Xk+1 −Xk)] = E [hk+1E [(Xk+1 −Xk) | Fk]]
≤ KE [E [(Xk+1 −Xk) | Fk]] = KE [Xk+1 −Xk]

Also the results of martingale theory spring ultimately from this rather simple theorem.

4. Some martingale inequalities.
Let {Xn} be process. For a < b, let Un([a, b], {Xk}) denote the number of upcrossings

of [a, b] by X0, X1, . . . , Xn}, an upcrossing being a piece of the path of {Xn} from the first
time (after the previous upcrossing) it reaches level a or less until the next time it rises to
level b or above. The notation y+ is used to denote y1{y≥0}.

Theorem 3 Doob’s Upcrossing Inequality. Let {Xn} be a submartingale. For any a < b,

E [Un([a, b], {Xk})] ≤
E [X+

n ] + |a|
b− a

.

The proof (sketch): Let Yn = (Xn − a)+. This is a positive submartingale because y →
(y − a)+ is an increasing convex function. (See, section 2, example (c).) Let hn = 1 if at
time n− 1 the process is in a segment of the path of Xn corresponding to an upcrossing of
[a, b]; otherwise, set hn = 0. Then {hn} is predictable and (h.Y )n ≥ (b− a)Un([a, b], {Xk}).
Using Theorem 2 (b), we obtain that

E [Un([a, b], {Xk})] ≤
E [(Yn − Y0]

b− a
≤ E [Xn+] + |a|

b− a
.

Let X∗n = max{Xk; 0 ≤ k ≤ n}. For p ≥ 1, the Lp norm of a random variable X is
denoted by

‖X‖p
4
= (E [|X|p])1/p .
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We remind the student of Hölder’s inequality; if p > 1 and
1

p
+

1

q
= 1,

‖XY ‖1 ≤ ‖X‖p‖Y ‖q.

Theorem 4 Doob’s inequalities. (a) Let Xn be a submartingale and let λ > 0. Then

P (X∗n ≥ λ) ≤ 1

λ
E

[
Xn1{X∗n≥λ}

]
≤ E [X+

n ]

λ
≤ E [Xn]

λ
. (2)

(b) If {Xn} is a martingale, then

P (| Xn |∗≥ λ) ≤ 1

λ
E

[
| Xn | 1{|Xn|∗≥λ}

]
≤ E [| Xn |]

λ
. (3)

(c) If {Xn} is a martingale or a positive submartingale and p > 1,

‖|Xn|∗‖p ≤
p

p− 1
‖Xn‖p. (4)

In this theorem, (b) is an immediate consequence of (a) applied to the submartingale {|Xn|}.
(c) is a consequence of a lemma that if X and Y are positive random variables and

P(X ≥ λ) ≤ 1

λ
E

[
Y 1{X≥λ}

]
,

then
‖X‖p ≤

p

p− 1
‖Y ‖p.

The is proved nicely in RW. The proof uses Hölder’s inequality and the following very useful
identity, which, if you have not seen it you should derive as an exercise (use Fubini’s theorem):
if Z is a non-negative random variable.

E [Z] =
∫ ∞

0
P(Z ≥ λ) dλ.

We sketch here the standard proof of (a)–see also RW. Let T
4
= min{k;Xn ≥ λ} (T =∞ if

{Xn} never reaches level λ). For k ≥ 1, let hk = 1{T≥k}. Since

{T ≥ k} = {X0 < λ,X1 < λ, . . . , Xk−1 < λ},

it is an event in Fk−1 since each Xj, j ≤ k − 1 is Fk−1-measurable. This implies that hk is
Fk−1-measurable for every k and hence that {hk} is F-predictable. It follows by Theorem 2
that if {Xn} is submartingale, then so also is {X0 + (h.X)n} and

E [X0 + (h.X)n] ≤ E [Xn] . (5)
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However (h.X)n =
n∑
k=1

1{T≥k}(Xk −Xk−1) =
T∧n∑

1

(Xk −Xk−1) = XT∧n −X0. Here T ∧ n

denotes the minimum of T and n; you can check that the formula works even when T = 0.
Now observe that the events {T ≤ n} and {X∗n ≥ λ}. It follows that

(h.X)n = XT∧n −X0 = XT1{T≤n} +Xn1{T>n} ≥ λ1{X∗n≥λ} +Xn1{X∗n<λ}.

By taking expectations on both sides and applying (5), we obtain

λP (X∗n ≥ λ) ≤ E [Xn]− E
[
Xn1{X∗n<λ}

]
and the inequalities of (a) then follow easily. �

The upcrossing inequality is the basis for an important class of theorems called martingale
convergence theorems.

Theorem 5 (a) Let {Xn} be a submartingale. If supn E [X+
n ] <∞, then X∞ = limn→∞Xn

exists and is finite almost-surely and E [|X∞|] <∞ and
(b) Let {Xn} be a uniformly integrable martingale (submartingale). Then X∞ = limn→∞Xn

exists and is finite almost-surely. Moreover, E [|Xn −X∞|] → 0 as n → ∞ and Xn =
E [X∞ | Fn] almost-surely (Xn ≤ E [X∞ | Fn] almost-surely).

(c) If {Xn} is a positive supermartingale, then X∞ = limn→∞Xn exists almost-surely.

Note that RW prefer to state the convergence theorems for supermartingales. One can
translate between sub- and supermartingale cases, since X is a supermartingale if and only
if −X is a submartingale.

The essential element in the proof of (a) is using the upcrossing inequality. Letting
n→∞ in the upcrossing inequality and applying the assumption supn E [X+

n ] <∞

E [U∞([a, b]; {Xk})] <
supn E [X+

n ] + |a|
b− a

<∞

and it follows that P (U∞([a, b]; {Xk})=∞) = 0 whenever a < b. Through the identity,

{ lim
n→∞

Xn does not exist} = ∪
a<b;a,b rationalU∞([a, b]; {Xk}) (6)

it follows that X∞ = limn→∞Xn exists almost surely. That E [|X∞|] < ∞ requires an
application of Fatou’s lemma, and it then follows that X∞ is finite a.s.

(b) follows from (a) using the fact that a.s. convergence implies convergence in probability
and then using Theorem 3 of the notes on lectures 1 and 2 and properties of conditional
expectation.

(c) is a consequence of (a) and the fact that if Xn is a positive supermartingale, then
−Xn is a negative submartingale and so X+

n = 0 for all n.

10



Stopping times and optional stopping theorems.
All what follows is very important in the generalization to continuous time and to the

application of martingale theory.

Exercise 7. Prove that the set where Xn does not converge to a finite limit is the set
∪
a<b;a,b rationalU∞([a, b]; {Xk}).

We note as corollaries:

Theorem 6 (a) Lévy’s upward convergence. Let E [|Z|] <∞. If F∞
4
= σ(∪∞1 Fi), E [Z | Fn]→

E [Z | F∞] a.s. and in L1.
(b) Lévy-Doob downward convergence. Let E [|Z|] < ∞. If F0 ⊃ F−1 ⊃ F−2 ⊃ · · · and

F−∞ = ∩∞0 F−n, then E [Z | F−n] converges a.s. and in L1 to E [Z | F−∞].

Notes: The upward convergence theorem is a direct Corollary of Theorem 5 (b) and the
fact that the martingale {E [Z | Fn]} is uniformly integrable. This last fact is a consequence
of:
Exercise 8. Let S be a family of σ-algebras. Let E [|Z|] < ∞. Then {E [Z | G] ; G ∈ S} is
uniformly integrable.

The downward convergence theorem is not a direct consequence of Theorem 5. Rather,
one follows the proof of Theorem 5, using the upcrossing inequality and the fact that for
every n, the sequence (E [Z | F−n] , . . . ,E [Z | F0]) is a martingale.

Definition of stopping time. Given a filtration F, a random variable T taking values in
{0, 1, 2, . . . , } ∪ {∞} is called an F-stopping time if

{T ≤ n} ∈ Fn, for all 0 ≤ n. (7)

One should check that this is equivalent to requiring that {T = n} be an event in Fn for
each finite n. However the condition (7) is the one that generalizes best to continuous time.
The condition says that a decision to stop at time n can be based only on the information
available up to time n.

We have already encountered a stopping time in the sketch of the proof of Doob’s mar-
tingale inequality in Theorem 4. Most stopping times in practice are first entrance times like
the one in this proof. Generally, if {Yn} is an F-adapted process and if U is a Borel set,

TU = min{n; Yn ∈ U}

defines a stopping time with respect to F; the student should verify this as an easy exercise.

Also an easy exercise is (we essentially did it above): if hn = 1{T≥n}, n ≥ 1 and if n ∧ T 4
=

min(n, T ), then
X0 + (h.X)n = X0 +XT∧n.

This is true of any random time. But if T is an F-stopping time, then {1{T≥n}} is F-
predictable. As an immediate consequence we derive,
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Theorem 7 Let {Xn} be an F-martingale (sub- or supermartingale). Let T be an F-stopping
time. Then {XT∧n} is a martingale (sub- or supermartingale.)

This theorem is essentially what is used in the proof of Theorem 4. Heuristically, it says
that we cannot beat the system using a stopping strategy.
{XT∧n} is refered to as the process {Xn} stopped at T .
When {Xn} is a martingale and T a stopping time, we find that because {XT∧n} is a

martingale, E [XT∧n] = E [X0] for all n—our expected fortune at T or n, whichever comes
first, is exactly what we have today at time 0. If we could exchange limits with respect
to n and expectation, and if T < ∞ almost surely, we would get E [XT ] = E [X0]. This
will not always be true; think of the symmetric Bernoulli random walk starting at 0, so that
E [Xo] = 0. This random walk is a martingale. But it will reach any level eventually. So, if T
is the first time under which this is valid are called optional stopping theorems. They include
theorems extending the martingale property to stopping times. To state such a theorem, we
need another very important definition:

Definition of stopped σ-algebra. Let T be an F = {Fn}n≥0-stopping time. Define

FT
4
= {A; S ∈ F , A ∩ {T ≤ n} ∈ Fn ∀ n ≥ 0} .

Exercise 9. Verify that FT is a σ-algebra.

Heuristically, A is the set of events of the filtration which can occur up to the random
time. It is very useful to note that if T is a stopping time and if A ∈ FT , then the random
time

TA(ω)
4
=

{
T (ω) if ω ∈ A;
∞, if not.

is also a stopping time and 1{TA<∞} = A ∩ {T <∞}.
Exercise 9. If S and T are F stopping times and S ≤ T , show that FS ⊂ FT . In fact, verify
all the properties listed in the exercise on page 159 of RW, Volume I.

Theorem 8 (Optional stopping) Let {Xn} be an F-martingale (respectively, submartin-
gale), and let T be an F-stopping time. Suppose

(i) E
[
|XT |1{T<∞}

]
<∞; and

(ii) lim inf
n→∞

E
[
|Xn|1{T>n}

]
= 0.

Then
E
[
XT1{T<∞}

]
= E [X0]

(
respectively, E

[
XT1{T<∞}

]
≥ E [X0] .

)
(8)

Under the same conditions, if S and T are stopping times and if S ≤ T <∞ a.s., then

E [XT | FS] = XS, a.s., (respectively,E [XT | FS] ≥ XS, a.s. (9)
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Conditions (i) and (ii) supply what is needed to interchange limit and integration in the
identity E [XT ] = E [X0] in the martingale case.

The the proof of the second statement includes the first (with a slight modification) in
the case S = 0. So we stick to the second statement. For the second statement, take A ∈ FS.
It is enough (why?) to show that

E [1AXT ] = E [1AXS] for every A ∈ FS.

Fix A ∈ FS. Let m ≤ n. Then, since A ∩ {S=m} ∈ Fm and {XT∧n} is a martingale,

E

[
1A∩{S=m}XT∧n

]
= E

[
1A∩{S=m}XT∧m

]
= E

[
1A∩{S=m}XT∧S

]
= E

[
1A∩{S=m}XS

]
.

On the other hand, since S > n implies T > n, E
[
1A∩{S>n}XT∧n}

]
= E

[
1A∩{S>n}Xn}

]
.

Therefore

E [1AXT∧n] =
n∑
0

E

[
1A∩{S=m}XT∧n

]
+ E

[
1A∩{S>n}XT∧n}

]
= E

[
1A∩{S≤n}XS

]
+ E

[
1A∩{S>n}Xn}

]
.

By taking n → ∞ along a subsequence for which the second term goes to zero, which we
can do by (ii), and by using (i) and dominated convergence, the right hand side will have
the limit E [1AXS]. On the other hand

E [1AXT∧n] = E
[
1AXT1{T≤n}

]
+ E

[
1AXn1{T>n}

]
,

and by taking n→∞ along a subsequence for which, by (ii), the second term goes to 0, and
applying dominated convergence for the first term, by virtue of (i), we can conclude that
this tends to E [1AXT ]. We therefore conclude that E [1AXT ] = E [1AXS], as required. �

There are a host of different, more easily checked conditions implying the assumption
(i) and (ii) of the theorem. Some of these are stated in RW. Perhaps the simplest set of
conditions is simply that P(T < ∞) = 1 and that {Xn} be uniformly integrable; see RW
page 159, Theorem 59.1. In this case X∞ is defined an in L1 and (9) is true even for stopping
times with positive probability of being infinite. See RW for a direct proof.

For many applications of optional stopping see Chapter 6 of O.
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