
NOTES AND EXERCISES, LECTURE 1, MATH 642:592, Spring 2008

1. Probability space, random variables and expectation.
We summarize the formal mathematical setting of the course:

(1) All analysis takes place in a probability space. This is a triple (Ω,F ,P), in which
Ω is a non-empty set, F is a σ-algebra of subsets of Ω called events, and P is a
probability measure on (Ω,F). Recall that a σ-algebra is a collection of sets closed
under the operations of taking complements, of countable unions, and of countable
intersections. A probability measure is a countably additive (non-negative) measure
for which P(Ω) = 1. In this course, (Ω,F ,P) is usually the notation for a generic
probability space.

(2) σ-algebras. In probability theory, events come bundled naturally as packages of σ-
algebras. If C is some collection of subsets of a set Ω, σ{C}, called the σ-algebra
generated by C, is the smallest σ-algebra containing C, or equivalently, the intersection
of all σ-algebras of subsets of Ω containing C. A particularly important type is a Borel
σ-algebra. If S is a topological space, B(S) is the σ-algebra generated by the open
sets of S and it is called the Borel σ-algebra of S. When we use the term Borel sets
without specifying S, we generally mean B(R) or B(Rn), whichever is appropriate.

(3) Random Variables. A random variable is a Borel measurable map from (Ω,F) to the
extended reals. This means that for every Borel subset of IR, X−1(U) = {ω ; X(ω) ∈
U} belongs to F . Hence if P is a probability measure on (Ω,F) we can assign a
probability to the event that X takes values in U , for every Borel U . The σ-algebra
generated by X is the inverse image of the Borel sets of R under X:

σ{X} 4= X−1 (B(R))
4
=
{
X−1(U) ; U ∈ B(R)

}
.

(The symbol “
4
=” will be used for equalities which are definitions.

When a probability measure P is given the cumulative distribution function of a ran-
dom variable X is FX(x) = P (X−1((−∞, x])). We write this last expression less
pedantically as P(X ≤ x).

(4) Expectation The expected value (mean value) of X is E [X]
4
=
∫

Ω
X(ω) dP, where the

integral is in the sense defined in general measure and integration theory. To review
briefly: define the indicator function of a subset A of Ω, by

1A(ω)
4
=

{
1 if ω ∈ A;
0 if not.
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We shall use this notation throughout the course. When A ∈ F , P(A) makes sense
and we define

E [1A] =
∫

Ω
1A(ω) dP(ω)

4
= P(A).

A simple random variable is a random variable of the form
n∑
1

ci1Ai(ω), whereA1, . . . , An

are in F ; they are just random variables taking values in a finite set. The integral (ex-
pectation) of a simple random variable is defined to be

E

[
n∑
1

ci1Ai

]
4
=

n∑
1

ciP(Ai).

When the ci’s are distinct and the Ai’s are disjoint, Ai = {X = ci} and so E [X] =∑
ciP(X = ci), which is the definition of expected value for discrete random variables

in elementary probability theory. For any nonnegative measurable random variable X,
the integral is defined as

E [X] =
∫
XdP

4
= sup {E [Y ] ; Y is simple, Y ≤ X.}

For a general X, E [X] = E [X+] − E [X−], where X+ and X− are the positive and
negative parts of X and it is assumed at most one of E [X+] and E [X−] is infinite.

We assume familiarity with the big three theorems on limits and integrals: the mono-
tone convergence theorem, the dominated convergence theorem, and Fatou’s lemma.

A random variable X for which E [|X|] < ∞ is said to be integrable; sometimes we
write instead X ∈ L1(P). Similarly, X ∈ Lp(P) means E [|X|p] < ∞. X is square
integrable if E [X2] <∞.

It is a theorem that
E [g(X)] =

∫ ∞
−∞

g(x)dFX(x),

whenever the integral and the expectation make sense, even if the exectation is ∞ or
−∞.

Since, for postive M , 1{|X|≥M} ≤ (|X|/M)1{|X|≥M} ≤ |X|/M , we get the very useful
Markov’s inequality,

P (|X| ≥M) = E
[
1{|X|≥M}

]
≤ E [|X|]

M

References. Rogers and Williams, Volume I, section II.1) (Rogers and Williams will
hereafter be abbreviated, RW, or R and W.) Also Chapter 1 of probability theory notes
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available at http://www.rutgers.edu/ ocone/problect.html. (This reference is hereafter
abbreviated by O.)

2. Complete probability spaces and completion. Technical issues often require completeness.
A probability space (Ω,F ,P) is complete if whenever B ⊂ A and A ∈ F , it follows that
B ∈ F also. If a probability space is not complete it can alway be extended to a complete
space. Given an arbitrary (Ω,F ,P), define

NP 4= {B ⊂ Ω ; B ⊂ A,A ∈ F , P(A)=0} .

Exercise 1. a) Let FP 4=
{
B ⊂ Ω ; there exist A ∈ F , N ∈ NP s.t. B = A ∪N

}
.

For B = A ∪ N , where A ∈ F and N ∈ NP, define P̄(B) = P(A). Show this definition

of P̄ is consistent and (Ω,FP, P̄) is a complete extension of (Ω,F ,P).

b) R and W (page 94) define completion in a different way. For any B ∈ Ω they define
inner and outer measures:

P
∗(B)

4
= inf {P(A) ; B ⊂ A, A ∈ F} and P∗(B)

4
= sup (P(A) ; A ⊂ B, A ∈ F} .

Then they define F̃ to be the σ-algebra of subsets B such that P∗(B) = P∗(B), and ˜
P(B) =

P
∗(B) for B ∈ F̃ . Show that

F̃ = {B ⊂ Ω ; there are A0, A1 in F with A0 ⊂ B ⊂ A1 and P(A1 − A0) = 0} ,

and (Ω, F̃ , P̃) defines the same complete space as the construction in (a).

3. Uniform integrability. (References: RW, pp. 113-116; O, Chapter 6, pp 36-40.)
We start off with a simple looking inequality:

E [1A|X|] = E
[
1A|X|1{|X|<M}

]
+ E

[
1A|X|1{|X|≥M}

]
≤MP(A) + E

[
|X|1{|X|≥M}

]
(1)

The first term follows simply because |X|1{|X|<M} < M , the second because 1A ≤ 1 Uniform
integrability is about bounding the second term uniformly in a family of random variables.

Let X be a family of random variables on a probability space. X is said to be uniformly
integrable (UI) if

lim
M→∞

sup
X∈X

E

[
|X|1{|X|≥M}

]
= 0. (2)

A simple argument (exercise) shows: if X is UI, then sup
X∈X

E [|X|] <∞.
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Theorem 1 A family X is uniformly integrable if and only if
(i) sup

X∈X
E [|X|] <∞;

(ii) For every ε > 0 there exists a δ > 0 such that P(A) < δ implies E [1A|X|] < ε for
all X ∈ X . Equivalently,

lim
δ↓0

sup
IP (A)≤δ

E [1A|X|] = 0 (3)

Proof: Assume X is UI. We have already stated that (i) is true. To prove (ii), let ε > 0 and

then take M so that sup
X∈X

E

[
|X|1|X|≥M

]
< ε/2. Then choose δ = ε/(2M). By the inequality

(1), for every X ∈ X , E [1A|X|] < ε.

Exercise 2. Prove that (i) and (ii) imply uniform integrability. (Hint: use Markov’s inequal-
ity, P(|X| ≥M) ≤M−1

E [|X|].)

How can one check uniform integrability? Here is another equivalent condition for uniform
integrability.

Theorem 2 A family X is uniformly integrable if and only if there exists a nonnegative
function φ on [0,∞) such that limx→∞ x/φ(x) = 0 and supX∈X E [φ(|X|)].

Proof: (if) There is an α >∞ so large that φ(x) > 0 for all x ≥ α. Thus, for M ≥ α,

|x|1{|x|≥M} = φ(|x|) |x|
φ(|x|)

1|x|≥M ≤ φ(|x|) sup
x≥M

x

φ(x)
.

Therefore E
[
|X|1{|X|≥M}

]
= sup

x≥M

x

φ(x)
E [φ(|X|)]. Since limM→∞ supx≥M x/φ(x) = 0 and

supX∈X E [φ(|X|)] <∞, the uniform integrability of X follow.

Exercise 3. Assume that X is uniformly integrable. Show that the following construction pro-
duces a convex increasing function φ such that limx→∞ x/φ(x) = 0 and supX∈X E [φ(|X|)] <
∞.

Set φ(0) = 0. Choose an increasing sequence Mk such that

sup
X∈X

∞∑
k=1

kE
[
|X|1{|X|≥Mk}

]
<∞,

and define φ so that

φ′(x) =
∑
k

(
k − Nk+1−x

Nk+1 −Nk

)
1Nk≤x<Nk+1

.
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As a consequence of this Theorem, X is UI if it is Lp(P) bounded for some p > 1, that
is, if

sup
X∈X

E [|X|p] <∞.

This criterion is commonly used for deducing UI.

One thing uniform integrability is good for is that it allows us to interchange limits and
expectations without the need to use the Dominated Convergence Theorem. Recall that
Xn → X in probability as n→∞ means limn→∞ P (|Xn −X| > ε) = 0 for every ε > 0.

Theorem 3 Suppose that X, and X1, X2, . . . are integrable. Then limn→∞ E [|Xn −X|] = 0
if and only if Xn → X in probability and {Xn} is uniformly integrable.

Proof: (if). Suppose {Xn} is UI and Xn → X in probability. Then one can check that
uniform integrability of {Xn} implies that of {Xn −X}. Fix an arbitrary ε > 0. Clearly

E [|Xn −X|] = E

[
|Xn −X|1{|Xn−X|<ε}

]
+ E

[
|Xn −X|1{|Xn−X|≥ε}

]
≤ ε+ E

[
|Xn −X|1{|Xn−X|≥ε}

]
.

Since limn→∞ P (|Xn −X| ≥ ε) = 0, by assumption, Theorem 1) says that from uniform

integrability of {Xn − X}, we can conclude that E
[
|Xn −X|1{|Xn−X|≥ε}

]
→ 0 as n → ∞.

Therefore, from the last inequality,

lim sup
n→∞

E [|Xn −X|] ≤ ε.

This being true for every ε > 0, take ε ↓ 0 to derive limn→∞ E [|Xn −X|] = 0.

Exercise 4. a) Show that if {Xn} is UI and E [|X|] <∞, then {Xn −X} is UI. (One could
as well prove {Xn +X} is UI and then apply the result with −X in place of X to get UI of
{Xn −X}.)

b) Prove the “only if” direction in the theorem above.

Exercise 5. Recall that Xn → X in distribution if limn→∞ E [h(Xn)] = E [h(X)] for ev-
ery bounded continuous funtion h. We also write convergence in distribution as Xn =⇒
X. Show that if Xn =⇒ X and {Xn} is UI, then E [Xn] → E [X]. (Hint: Consider
hM(x) = max{|x|,M} and write |x| = |x| − hM(x) + hM(x). Conversely, show that
Xn|LongrightarrowX and limn→∞ E [|Xn|] = E|X| imply that {Xn} is uniformly integrable.
(Source, Ethier and Kurtz, p. 494, Markov Processes: Characterization and Convergence,
Wiley.)

4.Signed measures and the Radon-Nikodym theorem. (Reference: RW, Volume I, pp 98-99.)
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Fix a probability space (Ω,F ,P). Let X be an integrable random variable. Define on F
the function

λX(A)
4
= E [1AX] .

One can verify that (i) λX(∅) = 0; (ii) supA∈F |λX(A)| <∞ (because |λX(A)| ≤ E [1A|X|] ≤
E [|X|] < ∞ for all A; and (iii) If A1, A2, . . . are disjoint events λX(∪Ai) =

∑
i λ(Ai), (this

follows by use of the Dominated Convergence Theorem). Thus λX is countably additive, but
it could take on negative values.

In general, a measure λ on (Ω,F), possibly taking negative as well as positive values, and
satisfying conditions (i), (ii), and (iii) (with λX being replaced by λ) is called a bounded,
signed measure. The previous paragraph thus says that for any integrable random variable,
λX is a bounded, signed measure.

One can also define, unbounded signed measures; an unbounded signed measure may
take on the value +∞ on a set or −∞, but it may not take +∞ on one set and −∞ on
another.

A signed measure λ is absolutely continuous with respect to P (λ � P) if P(A) = 0
implies λ(A) = 0. Clearly, if X is an integrable random variable, then λX � P. The classic
Radon-Nikodym theorem of real analysis implies the converse:

Theorem 4 If λ is a bounded, signed measure and λ is absolutely continuous with respect
to P, then there is an integrable random variable X such that λ = λX .

We omit the proof. We only note that it suffices to treat the case when λ is actually
a positive measure, because the Jordan-Hahn decomposition says a signed measure can be
expressed as a difference of positive measures. If λ is positive, one considers the set Y of
nonnegative random variables Z such that λZ(A) ≤ λ(A) for all A ∈ F . This set has the
property that if Z and Y are both members, so is max(Z, Y ). One can then construct an
increasing sequence {Zn} of elements of Y such that E [Zn] ↑ supY ∈Y E [Y ]. Then limn→∞ Zn
exists and defines the sought for X. Another popular proof uses the Riesz representation
theorem.

Remark: It may be shown that if λ is bounded, then absolute continuity of P is equivalent
to:

∀ ε > 0, ∃ δ > 0, such that P(A) < δ implies |λ(A)| < ε. (4)

Observe that condition (ii) of Theorem 1 may be rephrased as saying that {λX ; X ∈ X}
is a uniformly absolutely continuous family of signed measures, in the sense of (4). Thus
Theorem 2 implies the equivalence of UI with L1(P ) boundedness of X plus uniform absolute
continuity of {λX ; X ∈ X}.

5.Dunford-Pettis theorem. We will state a fundamental theoretical result that will be impor-
tant in the proof of the Doob-Meyer decomposition. It is certainly a result worth knowing,
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and it is not hard to understand the statement. The proof is involved and so students
should consider the proof optional. For those that are interested, a detailed exposition of
one direction of the proof may be found in another document available from the course web
site.

The result, called the Dunford-Pettis compactness criterion, implies that uniform inte-
grability is a necessary and sufficient condition for weak sequential compactness of a family
of integrable random variables. The theorem applies to measure spaces more general than
probability spaces, but we shall only state its application to probability spaces.

In the discussion, (Ω,F ,P) stands for a fixed probability space and L1 for the space of
integrable (E[|X|] <∞) random variables on . Let {Xn} be a sequence of random variables
in L1. Let X be in L1, also. We say that {Xn} converges weakly to X (Xn → X (weakly))
if

lim
n→∞

E [ξXn] = E [ξX] for every bounded random variable ξ.

A family X of random variables in L1 is said to be (relatively) weakly sequentially compact
if any sequence contained in X contains a weakly convergent subsequence.

Theorem 5 A family X is weakly sequentially compact if and only if it is uniformly inte-
grable.

Remark: Recall from real analysis that the dual of L1 is the set of all linear functionals `
on L1 that are continuous in the sense that E|Xn−X| → 0 implies `(Xn → `(X). This dual
is isomorphic to the L∞, the space of bounded random variables, by the identification of
ξ ∈ L∞ with the linear functional `ξ(X) = E[ξX]. The weak topoolgy on L1 is the smallest
topology making all such linear functions continuous. So weak sequential compactness is a
property concerning the weak topology.

This theorem is important because in analysis one is often trying to construct a function
(here, random variable) by constructing a sequence of what one hopes are better and better
approximations. The Dunford-Pettis criterion allows us to extract a weak limit from the
conjectured approximants, if we can prove they are uniform integrable, and this weak limit
may give us what we are looking for. This will happen in the case of the Doob-Meyer
approximation.
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