Ramification and Discriminants

Let \(K \) be a number field of degree \(n \), and let \(p \) be a rational prime.

Proposition 1. Let \(\mathcal{O} \) be an order of \(K \), and let \(P_1 \ldots P_r \) be the prime ideals of \(\mathcal{O} \) which contain \(p \), each with multiplicity \(e_i \). Then the product \(M = P_1 \cdots P_r \) of these primes in contained in \(p\mathcal{O}' \). A product \(M_j \) obtained by omitting in \(M \) the prime \(P_j \) is contained in \(p\mathcal{O}' \) if and only if \(p \) divides \(e_j \).

Proof: By definition, an element is in \(p\mathcal{O}' \) if and only if its trace is \(p \) times an integer. For \(\alpha \in \mathcal{O} \) consider the reduction mod \(p \) of \(\text{Tr}_{K/Q}(\alpha) \). This can be computed as the trace of the linear map multiplication by \(\alpha \) on the \(\mathbb{F}_p \) vector space \(\mathcal{O}/p\mathcal{O} \). This latter vector space is isomorphic to the product of the vector spaces \(\mathcal{O}/P_i \), each repeated \(e_i \) times, since the simple quotients appearing in the module \(\mathcal{O}/p\mathcal{O} \) are of this form. The trace of the linear map multiplication by \(\alpha \) on the \(\mathbb{F}_p \) vector space \(\mathcal{O}/p\mathcal{O} \) is thus the sum of the traces of multiplication by \(\alpha \) on \(\mathcal{O}/P_i \), each repeated \(e_i \) times. If \(\alpha \) is in \(P_1 \cap \cdots \cap P_r \), multiplication by \(\alpha \) gives zero on \(\mathcal{O}/P_i \), so \(P_1 \cdots P_r \subset p\mathcal{O}' \). For \(\alpha \) in \(\prod_{i \neq j} P_i \) but not in \(P_j \), multiplication by \(\alpha \) is zero on \(\mathcal{O}/P_i \) for \(i \) different from \(j \), but there exist such \(\alpha \) inducing multiplication by any element of the field \(\mathcal{O}/P_j \), hence one giving trace \(e_i \) modulo \(p \). This verifies the final statement of the proposition.

Proposition 2. Let \(\mathcal{O} \) be an order of \(K \), and let \(P_1 \ldots P_r \) be the prime ideals of \(\mathcal{O} \) which contain \(p \), each with multiplicity \(e_i \), and degree \(f_i \). Then the largest power \(v_p(d(\mathcal{O})) \) of \(p \) dividing the discriminant of \(\mathcal{O} \) satisfies

\[v_p(d(\mathcal{O})) \geq n - \sum_{i=1}^r f_i \]

Equality holds above if and only if \(p \) does not divide \(e_i \) for all \(i \) and \(p \) does not divide \([\mathcal{O}_K : \mathcal{O}] \).

Proof: Consider two chains of submodules of \(p\mathcal{O}' \)

\[M = P_1 \cdots P_r \subset \mathcal{O} \subset \mathcal{O}' \]
\[M = P_1 \cdots P_r \subset p\mathcal{O}' \subset \mathcal{O}' \]

The order of \(\mathcal{O}'/M \) is \([\mathcal{O}' : \mathcal{O}][\mathcal{O} : M] = [\mathcal{O}' : p\mathcal{O}'][p\mathcal{O}' : M] \). Thus

\[|d(\mathcal{O})| = [\mathcal{O}' : \mathcal{O}] = p^{n-\Sigma f_i} [p\mathcal{O}' : M] \]

This establishes the inequality of the proposition. Equality occurs if and only if \([p\mathcal{O}' : M]\) is prime to \(p \). Recall that \(M = P_1 \cap \cdots \cap P_r \), so that \(M\mathcal{O}_K \) is contained in the intersection
of all prime ideals of \(\mathcal{O}_K \) which contain \(p \), and hence in \(p\mathcal{O}'_K \) by proposition 1 above applied to \(\mathcal{O}_K \). Consider the chain of submodules

\[
M \subset M\mathcal{O}_K \subset \mathcal{O}_K \subset p\mathcal{O}'_K \subset p\mathcal{O}'
\]

If \(p \) divides \([\mathcal{O}_K : \mathcal{O}]\) then it divides \([p\mathcal{O}' : M]\), so that equality does not occur in the proposition. If some \(e_j \) is divisible by \(p \), then \(M \subset M_j \subset \mathcal{O}'_K \), where \(M_j \) is the product of all \(P_i \) except for \(P_j \). Since \([M_j : M]\) is divisible by \(p \), this implies that equality does not occur. So equality in the proposition implies that \(p \) does not divide \(e_i \) for all \(i \) and \(p \) does not divide \([\mathcal{O}_K : \mathcal{O}]\).

Conversely, suppose that \(p \) does not divide \([\mathcal{O}_K : \mathcal{O}]\). We have a correspondence of primes in \(\mathcal{O} \) containing \(p \) and those primes of \(\mathcal{O}_K \) which contain \(p \), which preserves multiplicities \(e_i \) and degrees \(f_i \). Further, \(v_p(d(\mathcal{O}')) = v_p(d(\mathcal{O}_k)) \), since \([\mathcal{O}_k : \mathcal{O}]\) is prime to \(p \). So we may assume that \(\mathcal{O} = \mathcal{O}_k \) for the purpose of proving that equality occurs. If \(p \) does not divide \(e_i \) for all \(i \) then by proposition 1 the product of all \(P_i \) is in \(p\mathcal{O}'_K \) but no smaller product is. Thus the factorization of \(p\mathcal{O}'_K \) must involve all \(P_i \) precisely to the first power, so that the index \([p\mathcal{O}'_K : M]\) is a product of norms of prime ideals which do not divide \(p \), and hence is prime to \(p \), so equality results in the proposition.

Remark: Since \(n = \sum r_i e_i f_i \), the right hand side of the inequality above may be written as \(\sum r_i f_i (e_i - 1) \)

Corollary 1. If \(p \) ramifies in \(\mathcal{O} \), then \(p \) divides \(d(\mathcal{O}) \). If \(p \) divides \(d(\mathcal{O}) \) and if \(p \) does not divide \(e_i \) for all \(i \) and \(p \) does not divide \([\mathcal{O}_K : \mathcal{O}]\), then \(p \) ramifies.

Proof: If \(p \) ramifies, some \(e_i > 1 \), so the inequality of the proposition implies that \(v_p(d(\mathcal{O})) > 0 \). Under the hypotheses of the second sentence of the corollary, \(v_p(d(\mathcal{O})) = \sum f_i (e_i - 1) \geq 1 \), so some \(e_j > 1 \), so \(p \) ramifies.

Corollary 2. A prime ramifies in the maximal order \(\mathcal{O}_K \) if and only if it divides the discriminant. The same statement is true for an order of index prime to \(p \) in the maximal order, or for one of the form \(\mathbb{Z}[\alpha] \).

Proof: Corollary 1 shows that if \(p \) ramifies in the maximal order, then it divides the discriminant. If \(p \) divides the discriminant, and all \(e_j \) are prime to \(p \), the corollary above implies that \(p \) is ramified. If some \(e_j \) is divisible by \(p \), then it is clearly greater than 1, so \(p \) ramifies. The last statement follows from the fact that if an order has index prime to \(p \) in the maximal order, then \(p \) ramifies if and only if it ramifies in the maximal order. The final statement follows from previous work.

Sample Application: Let \(K \) be a number field generated over \(\mathbb{Q} \) by a root \(\alpha \) of \(x^4 - 3x^3 + 7 \). This is irreducible modulo 2, and has discriminant \(-19355 = -5 \cdot 7^2 \cdot 79 \). The polynomial factors as \(x^3(x - 3) \) modulo 7, so that \(7 \) is ramified in the order \(\mathbb{Z}[\alpha] \), and the power of 7 dividing the discriminant is 2, so that equality occurs in proposition 2. Thus \(\mathcal{O}_K = \mathbb{Z}[\alpha] \).