Problem Set 5.

1. Another application of Chebotarev density! Let L/K be a Galois extension of number fields. Let $Q \subset O_L$ be a nonzero prime ideal, and let $P = Q \cap O_K$. Recall that we showed that the natural map of G_Q to the Galois group of the finite fields O_L/Q over its subfield O_K/P is a surjection, with kernel I_Q. This led to the definition of the Frobenius element σ_Q which is a particular generator of the cyclic group G_Q/I_Q. Further, if we write L as the splitting field of a monic polynomial with coefficients in O_K we see that I_Q is trivial when Q is not one of the finite number of primes containing the discriminant of the polynomial.

a) We say that P splits completely in L if there are $[L:K]$ different prime ideals in O_L which contain P. Show that P splits completely if and only if some (and hence all) decomposition group G_Q is trivial.

b) Show that if $M/L/K$ are all Galois extensions, then any prime P in O_K which splits completely in M will also split completely in L.

c) Show that the Chebotarev density theorem implies that the density of primes splitting completely in L/K is $1/[L:K]$.

d) Show that if L_1, L_2 are Galois extensions of a number field K such that almost all primes of K which split completely in L_1 also split completely in L_2 then $L_2 \subset L_1$. Hint: Consider the Galois extension $M = L_1L_2$ and show that a Frobenius element for M/K associated to a prime is trivial if and only if the corresponding Frobenius elements for $L_1/K, L_2/K$ are trivial. Then use c).

e) Show that if Galois extensions L_1, L_2 of K are such that the set of primes splitting completely in L_1 agrees with the set of primes splitting completely in L_2 up to a finite set then $L_1 = L_2$.

2. Let K be a pure cubic number field: $K = \mathbb{Q}(\alpha)$ and α^3 is rational.

a) Show that there exist unique square free relatively prime integers $a > b \geq 1$ such that $K = \mathbb{Q}((ab^2)^{1/3})$.

b) Suppose $\alpha^3 = ab^2$. Let $\beta = \alpha^2/b$ so that $\beta^2 = \alpha a, \beta^3 = a^2b, \alpha^2 = b\beta, \alpha\beta = ab$. Show that the set $\mathcal{O} = \mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\beta$ is an order in K. Show that $d(\mathbb{Z}[\alpha]) = -27a^2b^4$, $d(\mathbb{Z}[\beta]) = -27a^4b^2$, and $d(\mathcal{O}) = -27a^2b^2$.

c) Show that \mathcal{O} is the maximal order in K if $ab^2 \not\equiv \pm 1 \pmod{9}$ and is of index 3 in the maximal order if $ab^2 \equiv \pm 1 \pmod{9}$.

3. Discriminants of cubic fields do not determine the field.

a) Show that if $p > q$ are primes the pure cubic fields $\mathbb{Q}((pq)^{1/3})$ and $\mathbb{Q}((pq^2)^{1/3})$ have the same discriminant $-27p^2q^2$ when neither of pq, pq^2 are ± 1 modulo 9.
b) Show that if the two number fields in part a) with discriminant $-27p^2q^2$ are isomorphic then they are isomorphic to $\mathbb{Q}(p^{1/3})$ and to $\mathbb{Q}(q^{1/3})$. Show that the discriminants of these latter fields have greatest common divisor dividing 27. Use this to show that under the assumptions of part a), the two fields given with the same discriminant $-27p^2q^2$ are not isomorphic.

c) Show that there are infinitely many discriminants of cubic fields for which there exist non-isomorphic cubic fields with that discriminant, so that contrary to the quadratic case the discriminant of a cubic number field does not determine the number field up to isomorphism.