Problem Set 11.

1. Find all integers \(x, y \) which solve the equation \(3x^2 - 4y^2 = 11 \) by introducing a suitable order \(O \) in a number field and analyzing it.

2. Let \(K \subset L \) be distinct number fields
 a) Show that the units in the maximal order in \(K \) form a finite index subgroup of the units in the maximal order of \(L \) if and only if \(L \) has no real imbeddings (that is \(r_1(L) = 0 \), so that \(L \) is totally complex) , \([L : K] = 2\) and all imbeddings of \(K \) are real imbeddings (that is, \(K \) is totally real).
 b) We call a number field \(L \) a CM field if it contains a proper subfield \(K \subset L \) as in part a). Show that a number field \(L \) is a CM field if and only if there is a nontrivial field automorphism \(\rho \) of \(L \) such that for each imbedding \(\phi(x) \) we have \(\phi(\rho(x)) = \bar{\phi}(x) \). Show that the maximal totally real subfield of \(L \) is the fixed field of \(\rho \).
 c) Let \(L \) be a CM field, with automorphism \(\rho \) as in (b). Show that for any unit \(\epsilon \in O_L^* \), \(\rho(\epsilon)/\epsilon \) is a member of the group \(\mu_L \) of roots of unity in \(L \). Show that this induces a group homomorphism from \(O_L^*/\mu_L^*O_K^* \) to \(\mu_L^*/\mu_K^* \).
 d) Show that the homomorphism in (c) is injective, so that \([O_L^*: \mu_L O_K^*] \leq 2\).
 e) (Kummer) Show that \(L = \mathbb{Q}(\exp(2\pi i/p)) \) for \(p \) an odd prime is a CM field. Show that for such fields the index in (d) is equal to 1, hence show that every unit in the ring of integers in the cyclotomic field \(L \) is a root of unity times a unit in the maximal order of the maximal real subfield. Hint: Consider the field \(O_L/P \) where \(P \) is a prime in \(O_L \) dividing \(p \) and examine the action induced there by \(\rho \).
 f) Construct an example of a CM field \(L \) such that the index in (d) is 2. Hint: Consider a totally real field \(K \) and a unit \(u \) which is negative in all imbeddings, and form the field \(L \) by adjoining a square root of \(u \) to \(K \).

3. Suppose that \(L/\mathbb{Q} \) is a Galois extension with Galois group \(H \), the quaternion group of order 8 given by \(\{ \pm 1, \pm i \pm j, \pm k \} \) with \(\pm 1 \) in the center and \(ij = -ji = k, i^2 = j^2 = k^2 = -1 \).
 a) Show that \(L \) contains 3 quadratic fields, none of which are CM fields.
 b) Show that if \(L \) contains a nonreal element, then it is a CM field.