1. Let M be a left R-module and let $B = \{ b \in R | bx = 0 \text{ for all } x \in M \}$ be the annihilator of M. Show that B is an ideal of R. Show that if C is any ideal contained in B then M is a left R/C module under $(a + C)x = ax$.

2. (Schur’s Lemma) Recall that a module M is irreducible (or simple) if the only sub-modules are 0 and M.
 a) Show that every irreducible module is cyclic
 b) Show that any nonzero homomorphism from an irreducible module M_1 to an irreducible module M_2 is an isomorphism. Conclude that if M is irreducible, the endomorphism ring $End_R(M)$ is a division ring.

3. Let \textbf{Top} be the category of all topological spaces, with morphisms the continuous maps. Let F be the forgetful functor to the category of sets. Determine the left adjoint and the right adjoint of F.

4. Let J be an index category, and let C be another category. Let $\text{FUNCT}(J, C)$ be the category of functors from J to C. Consider the functor Δ from C to $\text{FUNCT}(J, C)$ which assigns an object C of C to the constant functor in $\text{FUNCT}(J, C)$ with value C. Show that the left adjoint of Δ (if it exists) is the functor assigning to each functor F from J to C the inductive limit of F. Similarly, identify the right adjoint of Δ.

5. Hungerford 4.1.7
6. Hungerford 4.2.13
7. Hungerford 4.3.1
8. Hungerford 4.3.3
9. Hungerford 4.3.5