As usual, \(G \) is a group.

1. Prove the following two statements using group actions.
 a) Suppose that \(H \leq G \) and \(|G : H| = n < \infty \). Show that there is a subgroup \(K \leq H \) such that \(K \triangleleft G \) and \(|G : K| \) divides \(n! \), and in particular \(|G : K| < \infty \).
 b) Suppose that \(H_1 \leq G \) and \(H_2 \leq G \) are two subgroups of finite index in \(G \). Show that \(H_1 \cap H_2 \) has finite index in \(G \). (Hint. Use an action on the disjoint union \((G/H_1) \cup (G/H_2)\).)

2. Let \(\Omega \) be an infinite set and define
 \[
 \Sigma_\Omega^n = \{ \sigma \in \Sigma_\Omega \mid \sigma(\omega) = \omega \text{ for all but finitely many } \omega \in \Omega \}.
 \]
 a) Show that \(\Sigma_\Omega^n \triangleleft \Sigma_\Omega \).
 b) Make a reasonable definition of \(A_\Omega^n \), and show that \(A_\Omega^n \) is simple.

3. Suppose that \(G = \langle S \rangle \), and let \(X \) be a subset of \(G \). Show that \(X = G \) if and only if \((S \cup S^{-1})X \subseteq X\), where \(S^{-1} = \{ s^{-1} \mid s \in S \}\).

4. Let \(G = gp(s_1, \ldots, s_n | R) \), where \(R \) is the set of all relators of the form
 \[
 s_i^2, 1 \leq i \leq n
 \]
 \[
 (s_is_j)^2, 1 \leq i < j \leq n, j > i + 1
 \]
 \[
 (s_is_{i+1})^3, 1 \leq i < n
 \]
 Show that \(G \cong \Sigma_{n+1} \). (Hints. Map \(s_i \mapsto (i+1) \in \Sigma_{n+1} \). Also, let \(H \) be the subgroup of \(G \) generated by \(s_1, \ldots, s_{n-1} \), and show that \(G = H \cup s_nH \cup s_{n-1}s_nH \cup \cdots \cup s_1s_2 \cdots s_nH \).)

5. Each of the following statements is false. Give a counterexample in each case. Also alter the underlined part of the statement in as reasonable way as possible so that the statement becomes true; then prove the altered statement.
 a) If \(\phi : G \rightarrow H \) is any homomorphism and \(L \) and \(M \) are any subgroups of \(G \), then \(\phi(L \cap M) = \phi(L) \cap \phi(M) \).
 b) If \(K \operatorname{char} G \) and \(K \leq L \leq G \), then \(L \operatorname{char} G \) if and only if \(L/K \operatorname{char} G/K \).
 c) If \(P \in \text{Syl}_p(G) \) and \(H \) is any subgroup of \(G \), then \(P \cap H \in \text{Syl}_p(H) \).
 d) If \(G \) possesses a composition series and \(H \) is any subgroup of \(G \), then \(H \) possesses a composition series.
 e) If \(A, B \text{ and } C \) are subgroups of \(G \) such that \(A \triangleleft B \), then \(A \cap C \triangleleft B \cap C \) and \(B \cap C/A \cap C \cong B/A \).

6. If \(k \) is any field and \(n \) is any natural number, then we define \(Z = \{ cI \mid c \in k^\times \} \), \(\text{PGL}_n(k) = \text{GL}_n(k)/Z \) and \(\text{PSL}_n(k) = \text{SL}_n(k)/Z \cap \text{SL}_n(k) \). Show that \(\text{PGL}_n(k) \) has a normal subgroup \(H \cong \text{PSL}_n(k) \), and that \(\text{PGL}_n(k)/H \cong k^\times/(k^\times)^n \).

7. Suppose that \(G \) is a finite solvable group. Show that if \(x_1, \ldots, x_r \in G \) are elements of orders \(p_1^{a_1}, \ldots, p_r^{a_r} \), respectively, where \(p_1, \ldots, p_r \) are distinct primes and \(a_1, \ldots, a_r \) are nonnegative integers, and if \(x_1x_2 \cdots x_r = 1 \), then \(a_1 = a_2 = \cdots = a_r = 0 \). (Hint. Use induction. Remark. It is also true that any finite group with this property is solvable, but this is a very deep theorem.)

8. Show that up to isomorphism, there are exactly three nonabelian groups of order 12: \(A_4 \), \(Z_2 \times \Sigma_3 \) and \(gp\langle x, y \mid x^4, y^3, xyx^{-1}y \rangle \).