LAB 2: Orthogonal Projections, the Four Fundamental Subspaces, QR Factorization, and Inconsistent Linear Systems

In this lab you will use MATLAB to study the following topics:

- Geometric aspects of vectors: norm, dot product, and orthogonal projection onto a line
- The four fundamental subspaces associated with a matrix.
- The Gram-Schmidt Orthogonalization Algorithm and the QR matrix factorization.
- Orthogonal projections onto subspaces
- Best approximate solution to an inconsistent linear system
- The method of least squares for fitting curves to data points

MATLAB Preliminaries

Tcodes: For this lab you will need the Teaching Codes
grams.m, linefit.m, lsq.m, partic.m

Before beginning work on the Lab questions you should copy these codes from the Math 550 course web page to your directory.

Lab Write-up: After opening your diary file, type the comment line

% Math 550 MATLAB Lab Assignment #2

at the MATLAB prompt. Type format compact so that your diary file will not have unnecessary spaces. Put labels to mark the beginning of your work on each part of each question, so that your edited lab write-up has the format

% Question 1 (a) ...

and so on. Be sure to answer all the questions in the lab assignment. Insert comments in your diary file as you work through the assignment.

Random Seed: When you start your MATLAB session, initialize the random number generator by typing

rand('seed', abcd)

where abcd are the last four digits of your Student ID number. This will ensure that you generate your own particular random vectors and matrices.

BE SURE TO INCLUDE THIS LINE IN YOUR LAB WRITE-UP

Question 1. Norm, Dot Product, and Orthogonal Projection onto a Line

Generate random vectors \(\mathbf{u}, \mathbf{v} \in \mathbb{R}^3 \) by \(\mathbf{u} = \text{rvec}(3) \), \(\mathbf{v} = \text{rvec}(3) \). Use these vectors in the following.

(a) The norm \(\| \mathbf{u} \| \) of a vector is calculated by the MATLAB command \(\text{norm}(\mathbf{u}) \). The triangle inequality asserts that for all vectors \(\mathbf{u} \) and \(\mathbf{v} \), the norms satisfy \(\| \mathbf{u} + \mathbf{v} \| \leq \| \mathbf{u} \| + \| \mathbf{v} \| \). Check this inequality by MATLAB for your particular vectors.
The dot product $u \cdot v$ is calculated in MATLAB by $u'*v$ when u and v are column vectors of the same size. The absolute value $|t|$ of a number t is calculated in MATLAB by `abs(t)`. The Cauchy-Schwarz inequality asserts that for all vectors u and v, the norms satisfy $|u \cdot v| \leq \|u\| \|v\|$. Check this inequality by MATLAB for your particular vectors.

The orthogonal projection of the vector v onto the line L (one-dimensional subspace) spanned by the vector u is

$$w = \frac{u \cdot v}{\|u\|^2} u$$

(see Figure 3.5 on page 152 of Strang’s text). Use MATLAB to calculate w for your vectors. Two vectors are orthogonal if their dot product is zero. Verify by MATLAB that the vector $z = v - w$ is orthogonal to u. (If the dot product is not exactly zero but is a very small number of size 10^{-13} for example, then the vectors are considered orthogonal for numerical purposes.)

The formula for w in (c) can also be written as a matrix-vector product. Use MATLAB to obtain the matrix

$$P = u*inv(u'*u)*u'$$

(note carefully the punctuation and the order of the factors in this formula). Explain why P is a 3×3 matrix, although u is a vector. Calculate by MATLAB that Pv is the vector w for your u and v. Write out (by hand) an algebraic justification for the equality $w = Pv$ in general, using the properties of matrix multiplication.

Question 2. The Four Fundamental Subspaces

(a) Generate a random 3×2 matrix $B = rmat(3,2)$. Then form the 3×4 matrix $A = [B \ 2*B]$. The MATLAB function `orth` will produce an orthonormal basis for the column space Col(A). Let $C = orth(A)$. Verify that the columns of C are an orthonormal set of vectors by calculating $C'*C$. What is the rank of A?

(b) What is the dimension of the null space Null(A)? The MATLAB function `null` will produce an orthonormal basis for Null(A). Let $N = null(A)$. Verify that the columns of N are an orthonormal set of vectors by calculating $N'*N$. Also verify that $A*N = 0$, so each column of N is in the null space of A.

(c) What is the dimension of the column space of A^T? What is the dimension of the null space of A^T? Let $CT = orth(A')$ and $NT = null(A')$ be the matrices for the column space and the null space of A^T. Use the theory of the Four Fundamental Subspaces associated with A to determine which of the following matrices must be zero:

$$C'*NT, \ C*N', \ N'*CT, \ N*CT'.$$

Now check your answer by MATLAB.

Question 3. Gram-Schmidt Orthogonalization

Generate three random vectors in \mathbb{R}^3 by

$$u1 = rvect(3), \ u2 = rvect(3), \ u3 = rvect(3)$$

Use these vectors in the following.

(a) Since the set of vector $\{u1, u2, u3\}$ is random, it should be linearly independent. Use MATLAB to check this by calculating the rank of a suitable matrix. For the same reason, these vectors are almost certainly not mutually orthogonal. Check this with MATLAB.

(b) Now use these vectors to obtain an orthogonal basis for \mathbb{R}^3, following the Gram-Schmidt algorithm:

$$v1 = u1, \ v2 = u2 - ((v1'*u2)/(v1'*v1))*v1$$
Note that the denominator in this formula has been written as a dot product instead of \(\|v_1\|^2 \), since this avoids calculating a square root. The vector subtracted from \(u_2 \) to obtain \(v_2 \) is the projection of \(u_2 \) onto the line spanned by \(v_1 \), as in Question 1. Check that the vectors \(v_1 \) and \(v_2 \) are mutually orthogonal (within a negligible numerical error). Now set

\[
v_3 = u_3 - ((v_1^*u_3)/(v_1^*v_1))v_1 - ((v_2^*u_3)/(v_2^*v_2))v_2
\]

(use the up-arrow key to edit the previous command). The vectors subtracted from \(u_3 \) to obtain \(v_3 \) are the projections of \(u_3 \) onto the lines spanned by \(v_1 \) and by \(v_2 \), as in Question 1. Check that the vectors \(v_1, v_2, v_3 \) mutually orthogonal (within a negligible numerical error).

(c) Finally rescale the vectors \(v_1, v_2, v_3 \) to obtain an orthonormal basis for \(\mathbb{R}^3 \):

\[
w_1 = v_1/\|v_1\|, \quad w_2 = v_2/\|v_2\|, \quad w_3 = v_3/\|v_3\|
\]

Check (by MATLAB) that \(\|w_i\| = 1 \) for \(i = 1, 2, 3 \).

(d) A QR Factorization: Set

\[
A = [u_1, u_2, u_3], \quad Q = [w_1, w_2, w_3], \quad R = Q^*A
\]

Which entries of \(R \) do you know must be zero for any random choice of vectors? Verify by MATLAB that \(A = Q*R \).

How are these three vectors related to the original vectors \(u_1, u_2, u_3 \)?

Question 4. Orthogonal Projections

Generate three random vectors \(u_1, u_2, u_3 \in \mathbb{R}^5 \) and the matrix \(A \) with these vectors as columns:

\[
u_1 = rvect(5); \quad u_2 = rvect(5); \quad u_3 = rvect(5); \quad A = [u_1, u_2, u_3]
\]

Use these vectors and this matrix in the following.

(a) Let \(W = \text{Col}(A) \) be the subspace of \(\mathbb{R}^5 \) spanned by \(\{u_1, u_2, u_3\} \). What is \(\dim(W) \)? Justify your answer by an appropriate rank calculation using MATLAB.

The teaching code \texttt{grams.m} carries out the steps of the Gram-Schmidt algorithm, just as you did step-by-step in Question 3. Calculate

\[
Q = \text{grams}(A); \quad w_1 = Q(:,1), \quad w_2 = Q(:,2), \quad w_3 = Q(:,3)
\]

by MATLAB. Calculate \(Q^*Q \). Why does the answer tell you that \(\{w_1, w_2, w_3\} \) is an orthonormal set?

(b) The orthogonal projection \(P \) from \(\mathbb{R}^5 \) onto the subspace \(W \) is given by the \(5 \times 5 \) matrix

\[
P = w_1^*w_1 + w_2^*w_2 + w_3^*w_3
\]

(note that \(w_1 \) is a \(5 \times 1 \) column vector; hence \(w_1^* \) is a \(1 \times 5 \) row vector and \(w_1^*w_1^* \) is a \(5 \times 5 \) matrix). Verify by MATLAB that \(P - P^T = 0 \) and \(P^2 - P = 0 \) (these are the properties that characterize an orthogonal projection matrix).

(c) Orthogonal Decomposition \(v = w + z \): Generate another random vector \(v = rvect(5) \). Set \(w = P*v \), \(z = v - w \). Verify by MATLAB that \(u^*z = 0 \). This shows that \(w \) is in the subspace \(W \) and that \(z \) is the component of \(v \) perpendicular \(W \) (see Figure 3.8 on page 162 of Strang’s text).

(d) The projection matrix \(P \) onto the subspace \(W \) can be calculated directly from the matrix \(A \), without first orthogonalizing the columns of \(A \), as in Question 3. Define
You should refer to page 156 of Strang's text for the formula (3) to be used here.

Question 5. Approximate Solution to Inconsistent Linear System

For this question use the 5×3 matrix A and the vector $v \in \mathbb{R}^5$ from Question 4.

(a) Approximate Solution to $Ax = v$: Let $v = w + z$ be the orthogonal decomposition from Question 4(c). Show that

(i) The equation $Ax = v$ is inconsistent (has no solutions).

(ii) The equation $Ax = w$ is consistent.

(Calculate the rank of the augmented matrix in each case). Now solve the equation (ii) by

$$x_{ls} = \text{inv}(A' * A) * A' * v$$

(see equation (2) on page 162 of Strang’s text). Check by MATLAB that $A * x_{ls} = w$ (up to negligible numerical error). Denote the vector x_{ls} by \bar{x}. It is called the least squares approximate solution to the (unsolvable) equation $Ax = v$.

(b) Closest Vector Property: Generate a random vector $y = \text{rvect}(3)$ and verify by MATLAB that $P * A * y = A * y$. This shows that $A * y \in W$. Since $A * x = w$, the vector $A * \bar{x}$ is the vector in W that is closest to v. Thus the function $\|A * y - v\|$ is minimized by choosing $y = \bar{x}$. This is the closest vector property (see page 161 of Strang), which is also called the least squares property since the $\|A * y - v\|^2$ is the sum of the squares of the components of $A * y - v$. To illustrate this property, use the MATLAB norm function to verify that $\|A * \bar{x} - v\| < \|A * y - v\|$.

Question 6. Fitting Curves to Data Points

(a) Generating and Plotting Linear Data: Define a column vector of ten equally-spaced t values $t = [1:10]'$

Now generate a column vector of the corresponding values of the linear function $y = 4 + t$ and plot it by $y = 4 + t; \text{linefit}(t,y)$

(Note the semicolon that suppresses the display of the y data). MATLAB should open a new window in which this line is plotted. Notice that the line passes exactly through each data point, and the ‘best fit’ equation is the given function $4 + t$. Print this graph by clicking on file in the figure tool bar, and then click on print. Include the printed copy in your lab write-up.

(b) Linear Data with Random Noise: Now add some random noise to each y data value in part (a):

$$y = 2 + 4 * \text{rand}(10,1) + t; \text{linefit}(t,y)$$

These random data points don’t lie on the line from part (a), even though they show the same general trend. The line that is plotted is the best fitting line; it minimizes the mean square error between the y coordinates on the line and the data values. Notice how some data points are above the line, and others are below the line. The equation of the best line fitting the random data points is displayed above the graph. Print this graph (following the same procedure as in part (a)). Include the printed copy in your lab write-up.

(c) Fitting a Parabola to Data: Consider the following data:

<table>
<thead>
<tr>
<th>t</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>140</td>
<td>290</td>
<td>560</td>
<td>910</td>
<td>1400</td>
<td>2000</td>
</tr>
</tbody>
</table>

Include the printed copy in your lab write-up.
The goal is to fit this data by a parabola \(y = C + Dt + Et^2 \) with the coefficients \(C, D, E \) chosen to minimize the least-square error. Use MATLAB to define vectors \(t, y \in \mathbb{R}^6 \) using this data. Then define a \(6 \times 3 \) matrix \(A \) whose first column has all ones, the second column is \(t \), and the third column has the squares of the entries in \(t \). You can get the third column by the command \(t^2 \) (notice the period before the exponent). Now calculate the vector \(x \in \mathbb{R}^3 \) whose components \(C, D, E \) are the coefficients in the best-fitting parabola (see Section 3.3, Problem #25 on page 172 of Strang for an example, and also Question 5(a)). Finally, plot the data points and the least-squares parabola fitting these points by the commands

\[
\text{figure; plot(t,y,'*'); hold on}
\]
\[
s = [0:0.1:30]; u = \text{ones}(301,1); C = [u\ s'\ (s.^2)'];
\]
\[
\text{plot(s, C*x)}
\]

You should get a figure with the six data points indicated by * and a smooth parabola passing very close to each data point. Label and print out the figure. Calculate the relative least-squares error

\[
\text{norm}(y - A*x)/\text{norm}(y)
\]

This should be less than 0.01 (a one-percent error).

Final Editing of Lab Write-up:

After you have worked through all the parts of the lab assignment, edit your diary file. Include the MATLAB calculations, but remove errors that you made in entering commands and remove other material that is not directly related to the questions.