1. (Harris 13.6) Find the Hilbert function of the Segre variety $\Sigma_{n,m} = \sigma(P^n \times P^m) \subset P^{nm+n+m}$ and verify that the dimension is $n + m$.

2. (Harris 13.8) Determine the arithmetic genus of (i) a pair of skew lines in P^3 (i) a pair of incident lines in either P^2 or P^3 (iii) three concurrent but not coplanar lines in P^3 and (iv) three concurrent coplanar lines in either P^2 or P^3.

3. (Harris 13.9) Consider a plane curve $X \subset P^2$ of degree d and its image $Y = \nu_2(X) \subset P^5$ under the quadratic Veronese map. Compare the Hilbert polynomials of the two and observe in particular that the arithmetic genus is the same.

4. (Harris 13.17) Prove a weak form of the Bezout theorem in P^2: if F, G are polynomials of degree d, e on P^2 without common factors such that F, G generate the ideal of their intersection, then the intersection consists of $d \cdot e$ points. Similarly show that if $\Gamma \subset P^3$ is a complete intersection of surfaces of degrees d, e, f then Γ consists of $d \cdot e \cdot f$ points.

5. (Harris 13.18) Find the Hilbert polynomial of a complete intersection in P^3 of surfaces of degrees d, e. What is the arithmetic genus of this complete intersection?