Problem Set 12 (Last revised 12/2/2016)

- 1. (Harris 13.6) Find the Hilbert function of the Segre variety $\Sigma_{n,m} = \sigma(\mathbf{P}^n \times \mathbf{P}^m) \subset \mathbf{P}^{nm+n+m}$ and verify that the dimension is n+m.
- 2. (Harris 13.8) Determine the arithmetic genus of (i) a pair of skew lines in \mathbf{P}^3 (i) a pair of incident lines in either \mathbf{P}^2 or \mathbf{P}^3 (iii) three concurrent but not coplanar lines in \mathbf{P}^3 and (iv) three concurrent coplanar lines in either \mathbf{P}^2 or \mathbf{P}^3 .
- 3. (Harris 13.9) Consider a plane curve $X \subset \mathbf{P}^2$ of degree d and its image $Y = \nu_2(X) \subset \mathbf{P}^5$ under the quadratic Veronese map. Compare the Hilbert polynomials of the two and observe in particular that the arithmetic genus is the same.
- 4. (Harris 13.17) Prove a weak form of the Bezout theorem in \mathbf{P}^2 : if F, G are polynomials of degree d, e on \mathbf{P}^2 without common factors such that F, G generate the ideal of their intersection, then the intersection consists of $d \cdot e$ points. Similarly show that if $\Gamma \subset \mathbf{P}^3$ is a complete intersection of surfaces of degrees d, e, f then Γ consists of $d \cdot e \cdot f$ points.
- 5. (Harris 13.18) Find the Hilbert polynomial of a complete intersection in \mathbf{P}^3 of surfaces of degrees d, e. What is the arithmetic genus of this complete intersection?