Mathematics 535

Algebraic Geometry

Problem Set 6A (Last revised 11/21/2008)

7.28 Generalize 7.11 by showing that $\mathbf{P}^m \times \mathbf{P}^n$ is birational with \mathbf{P}^{m+n} via the map

 $\phi([Z_0,\ldots,Z_n],[W_0,\ldots,W_n]) = [Z_0W_0,Z_1W_0,\ldots,Z_mW_0,Z_0W_1,\ldots,Z_0W_n].$

What is the graph of this map? Describe the map in terms of blowing up and blowing down.

- 11.11 Find a homogeneous quadratic polynomial $Q(Z_0, \ldots, Z_3)$ and a homogeneous cubic polynomial $P(Z_0, \ldots, Z_3)$ whose common zero locus is a rational normal curve $C \subset \mathbf{P}^3$.
- 11.39 Show that if m > n there does not exist a nonconstant regular map $\phi : \mathbf{P}^m \to \mathbf{P}^n$ by using 11.38.
- 11.44 Let $X \subset \mathbf{P}^n$ be an irreducible k-dimensional variety. Find the dimension of the universal (n-l)-plane section $\Omega^{(l)}(X)$ and show that it is irreducible.
- 12.17 Observe that a curve of type (1, d 1) on a smooth quadric $Q \subset \mathbf{P}^3$ is a rational curve of degree d, that is the image of \mathbf{P}^1 under a map to \mathbf{P}^3 given by a quadruple of polynomials of degree d on \mathbf{P}^1 , or equaivalently a projection of the rational normal curve in \mathbf{P}^d . Use a count of parameters to show that for $d \geq 5$ the general rational curve of degree d is not a curve of type (1, d 1) on a quadric.