Recall that a morphism \(\phi : X \to Y \) for projective varieties \(X, Y \) is a continuous function such that for each open set \(U \) of \(Y \) and regular function \(f \) on \(U \) the composition \(f \circ \phi \) is regular on \(\phi^{-1}(U) \).

Let \(K \) be an algebraically closed field.

1. Verify that if \(X \subset \mathbb{P}^n \) is a projective variety and \(F_i(x_0, \ldots, x_m), i = 0, \ldots, n \) are homogeneous polynomials with no common zero on \(X \) then the function \(\phi([x_0, \ldots, x_m]) = [F_0(x_0, \ldots, x_m), \ldots, F_n(x_0, \ldots, x_m)] \) is a well defined function from \(X \) to \(\mathbb{P}^n \). By considering the restriction of \(\phi \) to the open subsets of the affine variety \(X \cap \{(x_0, \ldots, x_m)|x_j \neq 0\} \) where \(F_i(x_0, \ldots, x_m) \neq 0 \) show that \(\phi \) is a morphism from \(X \) to \(\mathbb{P}^n \) (see the middle paragraph on page 21 of Harris).

2. The goal of this problem is to determine the set of morphisms from \(X = \mathbb{P}^1 \) to \(Y = \mathbb{P}^1 \). Take homogeneous coordinates \([x_0, x_1]\) on \(X \) and \([s, t]\) on \(Y \).
 a) Suppose that \(r(z) \) is a rational function of the variable \(z \), that is a member of the fraction field \(K(z) \) of the polynomial ring \(K[z] \) (\(K(z) \) is the localization of \(K[z] \) with respect to the multiplicative set of nonzero polynomials). If \(r(z) = f(z)/g(z) \) is an expression for the rational function where \(f(z), g(z) \) have no common root, define the degree \(d \) of \(r(z) \) to be the maximum of degrees of \(f(z), g(z) \). Show that the rational functions \(F = x_0^d f(x_1/x_0), G = x_0^d g(x_1/x_0) \) are homogeneous polynomials in \(x_0, x_1 \) of degree \(d \), which factor as the product of \(d \) linear polynomials, and have no common zeros on \(\mathbb{P}^1 \). Let \(\phi_r([x_0, x_1]) = [F(x_0, x_1), G(x_0, x_1)] \) be the morphism from \(\mathbb{P}^1 \) to \(\mathbb{P}^1 \) defined in problem 1.
 b) Show that the construction of (a) gives a one to one map of the monoid of rational functions under composition to the monoid of morphisms from \(\mathbb{P}^1 \) to \(\mathbb{P}^1 \).
 c) Show that every morphism \(\phi \) from \(\mathbb{P}^1 \) to itself arises from the construction in (a). Hint: on some nonempty open set in \(X \) show that \(\phi([x_0, x_1]) \) is a rational function \(r \) of \(x_1/x_0 \) and verify that \(\phi = \phi_r \).
 d) Use the preceeding to show that the group of automorphisms \(Aut(\mathbb{P}^1) \) is isomorphic to the group of degree 1 rational functions under composition and that this is isomorphic to \(PGL(2, K) \).

1.27 Show that the images of the maps \(\mu, \nu : \mathbb{P}^1 \to \mathbb{P}^2 \) given by \(\mu[x_0, x_1] = [x_0^3, x_0 x_1^2, x_1^3] \) and \(\nu[x_0, x_1] = [x_0^3, x_0 x_1^2 - x_0^3, x_1^3 - x_0^2 x_1] \) are algebraic varieties.

1.28 Let \(\nu : \mathbb{P}^1 \to \mathbb{P}^2 \) be given by three homogeneous cubic polynomials. Show that if the polynomials have no common zero, then the image is a hypersurface which is the zero set of a cubic polynomial.

1.29 Let \(\nu_{\alpha, \beta} : \mathbb{P}^1 \to \mathbb{P}^2 \) be given by \(\nu_{\alpha, \beta}([x_0, x_1]) = [x_0^4 - \beta x_0^3 x_1, x_0^3 x_1 - \beta x_0^2 x_1^2, \alpha x_0^2 x_1^3 - x_0 x_1^3, \alpha x_0 x_1^3 - x_1^4] \). Show that the image of this map is a projective variety which is the zero locus of one quadratic and two cubic polynomials.