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R. Hartshorne, Algebraic Geometry, GTM 52, Chapter I.8

Now that we have met some algebraic varieties, and have encountered some of the main
concepts about them, it is appropriate to ask, what is this subject all about? What are
the important problems in the field, and where is it going? To define algebraic geometry,
we could say that it is the study of the solutions of systems of polynomial equations in an
affine or projective n-space. In other words, it is the study of algebraic varieties.

In any branch of mathematics, there are usually guiding problems, which are so dif-
ficult that one never expects to solve them completely, yet which provide stimulus for a
great amount of work, and which serve as yardsticks for measuring progress in the field. In
algebraic geometry such a problem is the classification problem. In its strongest form, the
problem is to classify all algebraic varieties up to isomorphism. We can divide the problem
into parts. The first part is to classify varieties up to birational equivalence. As we have
seen, this is equivalent to the question of classifying function fields (finitely generated ex-
tension fields) over k up to isomorphism. The second part is to identify a good subset of
a birational equivalence class, such the nonsingular projective varieties, and classify them
up to isomorphism. The third part is to study how far an arbitrary variety is from one of
the good ones considered above. In particular, we want to know (a) how much do you have
to add to a nonprojective variety to get a projective variety, and (b) what is the structure
of singularities, and how can they be resolved to give a nonsingular variety?

Typically, the answer to any classification problem in algebraic geometry consists of
a discrete part and a continuous part. So we can rephrase the problem as follows: define
numerical invariants and continuous invariants of algebraic varieties, which allow one to
distinguish among nonisomorphic varieties. Another special feature of the classification
problem is that often when there is a continuous family of nonisomorphic objects, the
parameter space can itself be given a structure of algebraic variety. This is a very powerful
method, because then all the techniques of the subject can be applied to the study of the
parameter space as well as to the original varieties.

Let us illustrate these ideas by describing what is known about the classification of al-
gebraic curves (over a fixed algebraically closed field k). First, the birational classification.
There is an invariant called the genus of a curve, which is a birational invariant, and which
takes on all nonnegative values g ≥ 0. For g = 0 there is exactly one birational equivalence
class, namely, that of the rational curves (i.e., those curves which are birationally equiva-
lent to P1). For each g > 0 there is a continuous family of birational equivalence classes,
which can be parametrized by an irreducible algebraic variety Mg, called the variety of
moduli of curves of genus g, which has dimension 1 if g = 1, and dimension 3g−3 if g > 1.
Curves with g = 1 are called elliptic curves. Thus for curves, the birational classification
question 1 is answered by giving the genus, which is a discrete invariant, and a point on
the variety of moduli, which is a continuous invariant. See Chapter IV for more details.

The second question for curves, namely, to describe all nonsingular projective curves
in a given birational equivalence class, has a simple answer, as we have seen, since there is
exactly one.

For the third question, we know that any curve can be completed to a projective curve
by adding a finite number of points, so there is not much more to say there. As for the
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classification of singularities of curves, see (V, 3.9.4).

While we are discussing the classification problem, I would like to describe another
special case where a satisfactory answer is known, namely, the classification of nonsingular
projective surfaces within a given birational equivalence class. In this case one knows that
(1) every birational equivalence class of surfaces has a nonsingular projective surface in it,
(2) the set of nonsingular projective surfaces with a given function field K/k is a partially
ordered set under the relation given by the existence of a birational morphism, (3) any
birational morphism f : X → Y can be factored into a finite number of steps, each of
which is a blowing-up of a point, and (4) unless K is rational (i.e., equal to K or ruled (i.e.,
K is the function field of a product P1×C, where C is a curve), there is a unique minimal
element of this partially ordered set, which is called the minimal model of the function
field K (In the rational and ruled cases, there are infinitely many minimal elements, and
their structure is also well-known.) The theory of minimal models is is a very beautiful
branch of the theory of surfaces. The results were known to the Italians, but were first
proved in all characteristics by Zariski [5], [61. See Chapter V for more details.

From these remarks it should be clear that the classification problem is a very fruitful
problem to keep in mind while studying algebraic geometry. This leads us to the next
question: how does one go about defining invariants of an algebraic variety? So far,
we have defined the dimension, and for projective varieties we have defined the Hilbert
polynomial, and hence the degree and the arithmetic genus pa. Of course the dimension is a
birational invariant. But the degree and the Hilbert polynomial depend on the embedding
in projective space, so they are not even invariants under isomorphism of varieties. Now
it happens that the arithmetic genus is an invariant under isomorphism (111, Ex. 5.3),
and is even a birational invariant in most cases(curves, surfaces, nonsingular varieties in
characteristics see (V, 5.6.1)), but this is not at all apparent from our definition. To go
further, we must study the intrinsic geometry on a variety, which we have not done at
all yet. So, for example, we will study divisors on a variety X. A divisor is an element of
the free abelian group generated by the subvarieties of codimension one. We will define
linear equivalence of divisors, and then we can form the group of divisors modulo linear
equivalence, called the Picard group of X. This is an intrinsic invariant of X. Another very
important notion is that of a differential form on a variety X. Using differential forms, one
can give an intrinsic definition of the tangent bundle and cotangent bundle on an algebraic
variety. Then one can carry over many constructions from differential geometry to define
numerical invariants. For example, one can define the genus of a curve as the dimension
of the vector space of global differential forms on the nonsingular projective model. From
this definition it is clear that it is a birational invariant. See (11, 6,7,8). Perhaps the most
important modern technique for defining numerical invariants is by cohomology. There
are many cohomology theories, but we will be principally concerned in this book with
the cohomology of coherent sheaves, which was introduced by Serre [3]. Cohomology is
an extremely powerful and versatile tool. Not only can it be used to define numerical
invariants (for example, the genus of a curve X can be defined as dim HI(X,(9x)), but it
can be used to prove many important results which do not apparently have any connection
with cohomology, such as ”Zariski’s main theorem,” which has to do with the structure
of birational transformations. To set up a cohomology theory requires a lot of work,
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but I believe it is well worth the effort. We will devote a whole chapter to cohomology
later in the book (Chapter 111). Cohomology is also a useful vehicle for understanding
and expressing important results such as the Riemann-Roch theorem 1. This was known
classically for curves and surfaces, but it was by using cohomology that Hirzebruch [1] and
Grothendieck (see Borel and Serre [1]) were able to clarify and generalize it to varieties of
any dimension (Appendix A). Now that we have seen a little bit of what algebraic geometry
is about, we should discuss the degree of generality in which to develop the foundations
of the subject. In this chapter we have worked over an algebraically closed field, because
that is the simplest case. But there are good reasons for .owing fields which are not
algebraically closed. One reason is that the local ring of a subvariety on a variety has a
residue field which is not algebraically closed (Ex. 3.13), and at times it is desirable to give
a unified treatment of properties which hold along a subvariety and properties which Id at
a point. Another strong reason for allowing non-algebraically close I fields is that many
problems in algebraic geometry are motivated by number theory, and in number theory
one is primarily concerned with solutions of equations over finite fields or number fields.
For example, Fermat’s problem is equivalent to the question, does the curve xn + yn = zn

in P2 for n ≥ 3 have any points rational over Q (i.e., points whose coordinates are in Q),
with x, y, z 6= 0.

The need to work over arbitrary ground fields was recognized by Zariski and Weil.
In fact, perhaps one of the principal contributions of Weil’s ”Foundations” [1] was to
provide a systematic framework for studying varieties over arbitrary fields, and the various
phenomena which occur with change of ground field. Nagata [2] went further by developing
the foundations of algebraic geometry over Dedekind domains. Another direction in which
we need to expand our foundations is to define some kind of abstract variety which does
not a priori have an embedding in an affine or projective space. This is especially necessary
in problems such as the construction of a variety of moduli, because there one may be able
to make the construction locally, without knowing anything about a global embedding. In
6 we gave a definition of an abstract curve. In higher dimensions that method does not
work, because there is no unique not singular model of a given function field. However,
we can define an abstract variety by starting from the observation that any variety has an
open covering by affine varieties. Thus one can define an abstract variety as a topological
space X, with an open cover Ui, plus for each Ui a structure of affine variety, such that on
each intersection Ui ∩ Uj the induced variety structures are isomorphic. It turns out that
this generalization of the notion of variety is not illusory, because in dimension ≥ 2 there
are abstract varieties which are not isomorphic to any quasi-projective variety (11, 4.10.2).
There is a third direction in which it is useful to expand our notion of algebraic variety. In
this chapter we have defined a variety as an irreducible algebraic set in affine or projective
space. But it is often convenient to allow reducible algebraic sets, or even algebraic sets with
multiple components. For example, this is suggested by what we have seen of intersection
theory in section 7, since the intersection of two varieties may be reducible, and the sum
of the ideals of the two varieties may not be the ideal of the intersection. So one might be
tempted to define a ”generalized projective variety” in Pn to be an ordered pair < V, I >,
where V is an algebraic set in Pn, and I ⊂ S = k[x0, . . . , xn] is any ideal such that
V = Z(I). This is not in fact what we will do, but it gives the general idea. All three
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generalizations of the notion of variety suggested above are contained in Grothendieck’s
definition of a scheme. He starts from the observation that an affine variety corresponds to
a finitely generated integral domain over a field (3.8). But why restrict one’s attention to
such a special class of rings? So for any commutative ring A, he defines a topological space
Spec A, and a sheaf of rings on Spec A, which generalizes the ring of regular functions
on an affine variety, and he calls this an affine scheme. An arbitrary scheme is then
defined by glueing together affine schemes, thus generalizing the notion of abstract variety
we suggested above. One caution about working in extreme generality. There are many
advantages to developing a theory in the most general context possible. In the case of
algebraic geometry there is no doubt that the introduction of schemes has revolutionized
the subject and has made possible tremendous advances. On the other hand, the person
who works with schemes has to carry a considerable load of technical baggage with him:
sheaves, abelian categories, cohomology, spectral sequences, and so forth. Another more
serious difficulty is that some things which are always true for varieties may no longer
be true. For example, an affine scheme need not have finite dimension, even if its ring
is noetherian. So our intuition must be supported by a good knowledge of commutative
algebra. In this book we will develop the foundations of algebraic geometry using the
language of schemes, starting with the next chapter.
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