CHAPTER 2

Fourier Series and Separation of Variables

2.1 Periodic functions and Fourier series

We first recall the elementary definitions of even, odd, and periodic functions (see Section 17.2 of Greenberg). A function \(f(x) \) is even if it is defined for all \(x \) (or possibly in some interval symmetric about \(x = 0 \), that is, of the form \((-a, a)\) or \([-a, a]\)) and satisfies \(f(x) = f(-x) \); it is odd if it is similarly defined and satisfies \(f(-x) = -f(x) \). We will frequently use the observation that if \(f(x) \) is defined for \(-a \leq x \leq a\) then

\[
\int_{-a}^{a} f(x) \, dx = \begin{cases}
0, & \text{if } f \text{ is odd;} \\
2 \int_{0}^{a} f(x) \, dx, & \text{if } f \text{ is even.}
\end{cases} \tag{2.1}
\]

This formula is easily derived by writing \(\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx \) and making the change of variable \(y = -x \) in the first integral.

A function \(f(x) \) defined on for all \(x \) is periodic with period \(T \) if \(f(x + T) = f(x) \) for all \(x \). A constant function is periodic with any period. Aside from this, the most important periodic functions are the trigonometric functions \(\sin x \) and \(\cos x \); these are each periodic with period \(2\pi \). Because of this, each of the functions \(\cos(n\pi x/\ell) \) and \(\sin(n\pi x/\ell) \) listed in (1.14) is periodic with period \(2\ell \). Linear combinations of functions all having the same period \(T \) have period \(T \), so that a Fourier series

\[
S(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{\ell} + b_n \sin \frac{n\pi x}{\ell} \right]. \tag{2.2}
\]

(see (1.25)) is periodic with period \(2\ell \).

It is also convenient to use the idea of the periodic extension of a given function: if \(f \) is defined on the interval \([a, b]\) then the periodic extension \(f_{\text{per}} \) of \(f \), which has period \(T = b - a \), is defined simply by “repeating” \(f \) in all the intervals \([a + nT, b + nT]\) for \(n = 0, \pm 1, \pm 2, \ldots \), so that for all \(x \),

\[
f_{\text{per}}(x) = f(x - nT) \quad \text{whenever } a + nT < x \leq b + nT, \quad n = 0, \pm 1, \pm 2, \ldots \tag{2.3}
\]

In Figure 2.1 we show a picture for \(a = 1 \), \(b = 3 \), and \(f(x) = x - 3/2 \):

![Figure 2.1: Periodic extension \(f_{\text{per}}(x) \) of a function \(f(x) \) defined for \(1 \leq x \leq 3 \).](image-url)
Note that \(f_{\text{per}} \) may be discontinuous at \(a, b, \) etc., even if \(f \) is continuous. A related fact is that in defining \(f_{\text{per}} \) we have taken \(f_{\text{per}}(a) = f(b) \) and not \(f_{\text{per}}(a) = f(a) \); some choice must be made but this has no effect in practice.

In Chapter 1 we discussed the Fourier series (2.2) as an expansion of a function \(f \), say piecewise continuous, defined on the interval \([-\ell, \ell]\). Specifically, if we define the coefficients \(a_n \) and \(b_n \) by the formulas (1.26) that is, by

\[
\begin{align*}
a_0 &= \frac{1}{2\ell} \int_{-\ell}^{\ell} f(x) \, dx, \\
a_n &= \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos \frac{n\pi x}{\ell} \, dx, \quad n \geq 1, \\
b_n &= \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin \frac{n\pi x}{\ell} \, dx, \quad n \geq 1,
\end{align*}
\]

(2.4)

then we will write

\[
f(x) \sim a_0 + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{\ell} + b_n \sin \frac{n\pi x}{\ell} \right] \quad \text{for} \ -\ell \leq x \leq \ell,
\]

(2.5)

to denote that the right hand side is the Fourier series of \(f \). In fact, we know from Chapter 1 that the symbol \(\sim \) in (2.5) can be replaced by an equality, if this is interpreted in the sense of one of the completeness statements of Section 1.5, that is, as in (1.31) or (1.32) (but recall that to be sure that (1.32) holds we need \(f'(x) \) also to lie in \(C_p[-\ell, \ell] \)).

Remark 2.1: One may use (2.1) to considerably simplify the formulas (2.4) when \(f \) is even or odd. For example, if \(f \) is even then \(f(x) \cos(n\pi x/\ell) \) is even and \(f(x) \sin(n\pi x/\ell) \) is odd, so that from (2.1),

\[
\begin{align*}
a_0 &= \frac{1}{\ell} \int_{0}^{\ell} f(x) \, dx, \\
a_n &= \frac{2}{\ell} \int_{0}^{\ell} f(x) \cos \frac{n\pi x}{\ell} \, dx, \\
b_n &= 0, \quad n \geq 1.
\end{align*}
\]

(2.6)

Similarly, if \(f \) is odd one has

\[
\begin{align*}
a_0 &= 0, \\
a_n &= 0, \\
b_n &= \frac{2}{\ell} \int_{0}^{\ell} f(x) \sin \frac{n\pi x}{\ell} \, dx, \quad n \geq 1.
\end{align*}
\]

(2.7)

Let us emphasize that in (2.4)–(2.7) we are considering the Fourier series of a function defined on the interval \([-\ell, \ell]\). We now want to relate these series to the Fourier series of periodic functions; there are two complementary ways of doing so.

Approach 1. Suppose that we are given a periodic piecewise continuous function \(g(x) \), defined for all \(x \); for the moment we assume that \(g(x) \) which has period \(2\ell \), i.e., that \(g(x + 2\ell) = g(x) \). In particular, \(g(x) \) is defined for \(x \) in the interval \([-\ell, \ell]\) and thus by restricting \(x \) to lie in this interval we obtain a function \(f \in C_p[-\ell, \ell] \) (specifically, \(f(x) = g(x) \) for \(-\ell \leq x \leq \ell \) and \(f(x) \) is undefined for other values of \(x \)). Then by the paragraph above we know that if we define \(a_n \) and \(b_n \) by (1.26), then \(f \) is the sum of its Fourier series in the sense of (1.32) (again assuming that \(f'(x) \) is also piecewise continuous). But now the periodic extension \(f_{\text{per}}(x) \) of \(f(x) \) is just \(g(x) \), and the right hand side of (2.4)
is already a periodic function with period 2ℓ. Thus we will also say that (2.2) is the Fourier series of $g(x)$:

$$g(x) \sim a_0 + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{\ell} + b_n \sin \frac{n\pi x}{\ell} \right] \equiv S(x) \quad \text{for all real } x.$$

(2.8)

As above, \sim can be replaced by $=$ in the sense of (1.32), which here becomes

$$S(x) = \begin{cases}
g(x), & \text{if } g \text{ is continuous at } x, \\
g(x+) + g(x-) \over 2, & \text{if } g \text{ is discontinuous at the point } x. \end{cases}$$

(2.9)

Note that in (2.9) we no longer need any special consideration for the endpoint of an interval, as we did in (1.32).

Approach 2. A second way to look at the connection of Fourier series on an interval with the Fourier series of periodic functions is to start with a function f defined only on the interval $[-\ell, \ell]$, say $f \in C_p[-\ell, \ell]$. Then f_{per}, a periodic function of period 2ℓ, can play the role of g above; in particular, the Fourier series of f converges to f_{per} everywhere, in our usual sense:

$$S(x) = \begin{cases}
f_{\text{per}}(x), & \text{if } f_{\text{per}} \text{ is continuous at } x, \\
f_{\text{per}}(x+) + f_{\text{per}}(x-) \over 2, & \text{if } f_{\text{per}} \text{ is discontinuous at the point } x. \end{cases}$$

(2.10)

Remark 2.2: (a) Suppose that we are in the situation described above: $g(x)$ is periodic with period 2ℓ, $f(x)$ is defined on $[-\ell, \ell]$, and $g(x) = f_{\text{per}}(x)$ or, equivalently, $f(x)$ is the restriction of $g(x)$ to the interval $[-\ell, \ell]$. Then since $f(x) = g(x)$ for $-\ell \leq x \leq \ell$, f can be replaced by g in the definition (2.4) of the Fourier coefficients:

$$a_0 = \frac{1}{2\ell} \int_{-\ell}^{\ell} g(x) \, dx, \quad a_n = \frac{1}{\ell} \int_{-\ell}^{\ell} g(x) \cos \frac{n\pi x}{\ell} \, dx, \quad n \geq 1,$$

$$b_n = \frac{1}{\ell} \int_{-\ell}^{\ell} g(x) \sin \frac{n\pi x}{\ell} \, dx, \quad n \geq 1.$$

(2.11)

Thus we never need to think about $f(x)$ at all: everything can be expressed in terms of $g(x)$. Furthermore, since each integrand in (2.11) is now periodic with period 2ℓ, the interval $[-\ell, \ell]$ over which the integration is carried out may be replaced by any other interval of the same length: for any X,

$$a_0 = \frac{1}{2\ell} \int_{X}^{X+2\ell} g(x) \, dx, \quad a_n = \frac{1}{\ell} \int_{X}^{X+2\ell} g(x) \cos \frac{n\pi x}{\ell} \, dx, \quad n \geq 1,$$

$$b_n = \frac{1}{\ell} \int_{X}^{X+2\ell} g(x) \sin \frac{n\pi x}{\ell} \, dx, \quad n \geq 1.$$

(2.12)
(b) In the discussion above we have always taken \(f(x) \) to be defined on \([-\ell, \ell]\), but this is not necessary. We can start with \(f(x) \) defined on any interval \([a, b]\), obtain its periodic extension \(f_{\text{per}}(x) = g(x) \), and then expand \(g(x) \) in a Fourier series. Suppose that \(b - a = T \), so that \(g(x) \) has period \(T \); then we may use (2.12), with \(2\ell = T \), to find the Fourier coefficients of \(g(x) \). In particular, if we take \(X = a \) then \(X + 2\ell = b \) and we obtain expressions involving the integral of \(g(x) \), or equivalently \(f(x) \), over the original interval \([a, b]\):

\[
f(x) \sim a_0 + \sum_{n=1}^{\infty} \left[a_n \cos \frac{2n\pi x}{T} + b_n \sin \frac{2n\pi x}{T} \right]
\]

(2.13)

with

\[
a_0 = \frac{1}{T} \int_a^b f(x) \, dx, \quad a_n = \frac{2}{T} \int_a^b f(x) \cos \frac{2n\pi x}{T} \, dx, \quad n \geq 1,
\]

\[
b_n = \frac{2}{T} \int_a^b f(x) \sin \frac{2n\pi x}{T} \, dx, \quad n \geq 1.
\]

(2.14)

Finally, everything said above applies also to the complex form of the Fourier series: a function \(g(x) \), periodic with period \(2\ell \), has a complex Fourier series

\[
g(x) \sim \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/\ell},
\]

(2.15)

with

\[
c_n = \frac{1}{2\ell} \int_X^{X+2\ell} g(x)e^{-in\pi x/\ell} \, dx.
\]

(2.16)

and with convergence in the sense of (2.9).

2.2 Separation of variables

To provide motivation for further study of Fourier series we will discuss here a very simple case of the method of separation of variables for solving partial differential equations (PDE). More examples of this method will be considered in Section 2.3 and Section 2.5.

Remark 2.3: All the equations that we will study will be linear; this means that, if \(u(x, t) \) is the unknown function that we want to find, every term in the equation will be either

(i) \(u \) itself or some partial derivative of \(u \), possibly multiplied by function of \(x \) and/or \(t \),

or

(ii) a term independent of \(u \), that is, a constant or some function of \(x \) and/or \(t \).

For example, the heat equation on an interval, which we will consider in this section, is

\[
u_t(x, t) - \alpha^2 u_{xx}(x, t) = f(x, t), \quad 0 < x < L, \quad t > 0.
\]

(2.17)
When the equation contains no term independent of \(u \), that is, no term of type (ii), it is called **homogeneous**; otherwise it is called **inhomogeneous**. (2.17) is inhomogeneous (unless \(f \) is zero); the corresponding homogeneous equation is

\[
 u_t(x, t) - \alpha^2 u_{xx}(x, t) = 0, \quad 0 < x < L, \quad t > 0.
\]

In these notes we will use separation of variables only for solving homogeneous PDE. We will solve inhomogeneous PDE using a particular solution; see Chapter 3. I believe that this approach is much clearer than that of Greenberg, who sometimes uses separation of variables for inhomogeneous problems.

The (homogeneous) heat equation (2.18), also called the **diffusion equation**, describes the temperature of a rod of length \(L \). It is written in terms of a coordinate system along the rod for which the coordinate \(x \) varies from \(x = 0 \) at the left end of the rod to \(x = L \) at the right end. The rod is assumed to be of such small cross section that we can regard the temperature as depending only on this coordinate \(x \) and the time \(t \), neglecting any variation of the temperature in directions perpendicular to the axis of the rod; the variable \(u(x, t) \) denotes this temperature. We also assume that the lateral surface of the rod is well insulated, so that heat can flow into or out of the rod only through the ends. Under these assumptions, \(u(x, t) \) satisfies (2.18).

Let us rewrite (2.18) slightly as

\[
 \text{PDE:} \quad u_t(x, t) = \alpha^2 u_{xx}(x, t), \quad 0 < x < L, \quad t > 0.
\]

We emphasize that here subscripts denote partial derivatives, that is, \(u_t = \partial u/\partial t \) and \(u_{xx} = \partial^2 u/\partial x^2 \). \(\alpha^2 \) is a constant, the **diffusion constant** or **thermal diffusivity**, which depends on the properties of the material of which the rod is formed. See Section 18.2.3 of Greenberg for a derivation of the heat equation and a discussion of this constant.

To determine \(u(x, t) \), however, we need more than the heat equation alone; as indicated above, heat can enter or leave the rod through its ends, and we must specify **boundary conditions** which determine this heat flow. For the moment let us suppose that the temperature at each end is held constant and equal to zero:

\[
 \text{BC:} \quad u(0, t) = 0 \quad \text{and} \quad u(L, t) = 0, \quad t > 0.
\]

These are called **homogeneous Dirichlet boundary conditions**: they are **homogeneous** because both equations in (2.20) have 0 on the right hand side, and the term **Dirichlet** here refers to the fact that the boundary condition at a particular boundary, \(x = 0 \) or \(x = L \), involves only the **value** of the temperature at that boundary. Other naturally occurring boundary conditions, which we will discuss later, involve also the derivative \(u_x(x, t) \) at the boundary \(x = 0 \) or \(x = L \).

Finally, we must give an **initial condition** specifying the temperature when the process starts, say at \(t = 0 \):

\[
 \text{IC:} \quad u(x, 0) = f(x), \quad 0 < x < L,
\]

where \(f(x) \) is some given function defined for \(0 < x < L \).
The PDE (2.19), boundary conditions (2.20), and initial condition (2.21) form one initial/boundary value problem which we wish to solve to determine $u(x,t)$ for all (x,t) with $0 < x < L$ and $t > 0$. At the risk of redundancy, we summarize:

Problem 1: Find a function $u(x,t)$ satisfying

- **PDE:** $u_t(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 < x < L, \quad t > 0$
- **BC:** $u(0,t) = 0$ and $u(L,t) = 0, \quad t > 0$ (2.22)
- **IC:** $u(x,0) = f(x), \quad 0 < x < L.$

The method we will use is *separation of variables*, which may be broken down into three steps:

Step 1: Find nonzero solutions of the partial differential equation (2.19) which have a product form

$$u(x,t) = X(x)T(t). \quad (2.23)$$

Step 2: Select from among the solutions found in Step 1 those solutions which satisfy the boundary condition (2.20). There will typically be an infinite sequence of these:

$$u_n(x,t) = X_n(x)T_n(t), \quad n = 1, 2, \ldots. \quad (2.24)$$

Step 3: Observe that, because the PDE and BC are linear and homogeneous, any linear combination of solutions of these will again be a solution. Thus for any choice of coefficients c_1, c_2, \ldots the linear combination

$$u(x,t) = \sum_{n=1}^{\infty} c_n u_n(x,t) \quad (2.25)$$

will again be a solution of the PDE and BC (assuming the series converges). Choose the constants c_n so that $u(x,t)$ satisfies the initial condition (2.21).

Remark 2.4: In Step 1 we specified a nonzero solution. This is because the zero function $u(x,t) = 0$ is always a solution of our problem (2.19) with (2.20), because both of these equations are linear and homogeneous. However, this solution cannot help us satisfy the initial condition (2.21) (unless $f(x) = 0$ for all x, in which case $u(x,t) = 0$ is a solution and we are done). For this reason we do not include the zero solution in carrying out Steps 2 and 3.

Let us now apply this program to our problem (2.19)–(2.21). For the first step we substitute the product form (2.23) into the PDE (2.19), and see that $X(x)$ and $T(t)$ must satisfy $X(t)T''(t) = \alpha^2 X''(x)T(t)$ or, dividing through by $\alpha^2 X(x)T(t)$,

$$\frac{1}{\alpha^2} \frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)}. \quad (2.26)$$
Now technically we consider only the second possibility, which requires that \(\lambda \) is positive, negative, or zero; when \(\lambda > 0 \) we write \(\lambda = \kappa^2 \) and when \(\lambda < 0 \) we write \(\lambda = -k^2 \). Then from (2.27) we obtain the solutions in these three cases (\(A \) and \(B \) are arbitrary constants, not both zero by Remark 2.4):

\[
\begin{align*}
(I) \quad \lambda &= \kappa^2 > 0 \quad X'' + \kappa^2 X = 0 \quad A \cos \kappa x + B \sin \kappa x \quad e^{-\alpha^2 \kappa^2 t} \\
(II) \quad \lambda &= 0 \quad X'' = 0 \quad A + Bx \quad 1 \\
(III) \quad \lambda &= -k^2 < 0 \quad X'' - k^2 X = 0 \quad A \cosh kx + B \sinh kx \quad e^{\alpha^2 k^2 t}
\end{align*}
\]

In each case, \(u(x, t) = X(x)T(t) \).

Now we pass to the second step: determining which solutions in (2.28) satisfy the boundary conditions (2.20). Consider the condition that \(u(0, t) = 0 \) for all \(t \); since \(u(t, 0) = X(0)T(t) \) this requires that \(X(0) = 0 \); the condition is similar for \(x = L \) and we conclude that (2.20) reduces to

\[X(0) = X(L) = 0. \] (2.29)

We analyze (2.29) separately for the three cases of (2.28).

(I) Since \(X(x) = A \cos \kappa x + B \sin \kappa x \), \(X(0) = A \) and (2.29) tells us that \(A = 0 \). But then \(X(L) = B \sin \kappa L \), and \(X(L) = 0 \) requires either that \(B = 0 \) or \(\sin \kappa L = 0 \). The first possibility would lead to \(X(x) = 0 \) for all \(X \), an uninteresting case (see Remark 2.4), so we consider only the second possibility, which requires that \(\kappa = n \pi / L \) or \(\lambda = (n \pi / L)^2 \), \(n = 1, 2, \ldots \). Thus from case I we have the solutions

\[u_n(x, t) = \sin \frac{n \pi x}{L} e^{-\lambda_n (n \pi / L)^2 t}, \quad \lambda_n = \frac{n^2 \pi^2}{L^2}, \quad n = 1, 2, \ldots \] (2.30)

(II) Since \(X(x) = A + Bx \), \(X(0) = A \) and (2.29) requires that \(A = 0 \). Then \(X(x) = Bx \) and \(X(L) = BL \); since \(L \) is not zero, \(X(L) = 0 \) requires that \(B = 0 \), so that \(X(x) = 0 \) for all \(x \); we reject this solution (see Remark 2.4). Case II leads to no interesting solutions.

(III) Since \(X(x) = A \cosh kx + B \sinh kx \), \(X(0) = A \) and (2.29) requires that \(A = 0 \). Then \(X(x) = B \sinh kx \) and \(X(L) = B \sinh kL \); since \(\sinh u = 0 \) only if \(u = 0 \), \(X(L) = 0 \) again requires that \(B = 0 \) and we have only the (uninteresting) zero solution.
We conclude that the only solutions of our PDE and BC found by separation of variables are those of (2.30).

We now turn to the third step of our program, and thus ask: Can we find constants c_1, c_2, \ldots such that

$$u(x,t) = \sum_{n=1}^{\infty} c_n \sin \frac{n\pi x}{L} e^{-\frac{(\alpha n \pi / L)^2}{t}},$$

(2.31)

which we know solves our PDE and BC, also satisfies the initial condition $u(x,0) = f(x)$? Since $u(x,0) = \sum_{n=1}^{\infty} c_n \sin(n\pi x / L)$, this is equivalent to asking:

Q1: Given a function $f(x)$ defined on $[0, L]$, do there exist constants c_1, c_2, \ldots such that

$$f(x) = \sum_{n=1}^{\infty} c_n \sin \frac{n\pi x}{L}, \quad \text{for } 0 \leq x \leq L? \quad (2.32)$$

If the answer is “yes” then (2.31) furnishes a solution to our problem (2.19)–(2.21). We analyze this question in the next section.

Remark 2.5: We may also take a slightly different, but equivalent, point of view on our procedure of separation of variables; specifically we may combine the differential equation for $X(x)$ in (2.27b) with (2.29) to obtain a boundary value problem

ODE: $X''(x) = -\lambda X(x)$ for some λ, $0 < x < L$, \quad (2.33a)

BC: $X(0) = 0$, $X(L) = 0$. \quad (2.33b)

After we have solved this problem, producing the λ_n and correspondingly the solutions $X_n(x) = \sin(n\pi x / L)$, we solve (2.27a) to obtain $T_n(t)$, and then $u_n(x,t) = X_n(x)T_n(t)$.

2.3 Half range and quarter range Fourier series

In this section we describe several useful Fourier-type series associated with a function $f(x)$ defined on the interval $[0, L]$, say $f \in C_p[0, L]$. Each of these is associated with some extension of f to a periodic function defined on the entire real line; graphs of these various extensions are shown in Figure 2.2 when $L = \pi$ and the function f is given by $f(x) = x$, $0 \leq x \leq \pi$.

A. The Fourier series of f. This is the series discussed in Section 2.1; see in particular Remark 2.2(b). Since $f(x)$ is defined for $0 \leq x \leq L$ it is the Fourier series of the periodic extension f_{per} of f to a function of period L. It has the form (2.13) with $\ell = L/2$:

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} \left[a_n \cos \frac{2n\pi x}{L} + b_n \sin \frac{2n\pi x}{L} \right], \quad (2.34)$$
Section 2.3 Half range and quarter range series

Figure 2.2: Various extensions of $f(x) = x$ from $[0, \pi]$ to \mathbb{R}.

with coefficients given by (2.14):

$$
a_0 = \frac{1}{L} \int_0^L f(x) \, dx, \quad a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{2n\pi x}{L} \, dx, \quad n \geq 1, \\
b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{2n\pi x}{L} \, dx, \quad n \geq 1, \quad (2.35)
$$

We know already that this series converges to $f(x)$ (in the sense of (1.32) or (1.32)).

B. The half range sine series of f. The series in (2.32) is called a half range sine series. Note that in comparison with (2.34), (2.32) involves only sine functions, and the nth sine term is $\sin(n\pi x/L)$, not $\sin(2n\pi x/L)$; this is the origin of the name.

There are two ways to think about (2.32). First, one can check easily that the functions $\sin(n\pi x/L)$, $n = 1, 2, 3, \ldots$, form an orthonormal set in $C_p[0, L]$ with the usual inner product. (Exercise: verify this.) This immediately tells us that the correct formula for
the coefficients b_n in (2.32) is

$$b_n = \frac{\langle f(x), \sin(n\pi x/L) \rangle}{\| \sin(n\pi x/L) \|_2^2} = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} \, dx.$$

(2.36)

The remaining question is whether or not this orthonormal set is complete, that is, whether or not equality holds in (2.32) for every function $f(x)$.

The second way to look at (2.32) also furnishes an answer to that question. Let us start with the function f defined on $[0, L]$, say $f \in C_p[0, L]$. We then define $f_1(x)$, the odd extension of f with period $2L$, which we will also call the half range sine extension, by first extending f to an odd function defined on $[-L, L]$, taking $f_1(x) = -f(-x)$ for $-L \leq x < 0$, and then extending this odd function to a periodic function, with period $2L$, on all of \mathbb{R} (see Figure 2.2). Now $f_1(x)$ has a Fourier series as in (2.5) (with $\ell = L$); by (2.7) the Fourier coefficients are given by

$$a_0 = a_n = 0, \quad b_n = \frac{2}{L} \int_0^L f_1(x) \sin \frac{n\pi x}{L} \, dx = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} \, dx, \quad n \geq 1,$$

(2.37)

where we have used the fact that $f_1(x) = f(x)$ for $0 \leq x \leq L$. The series is then just

$$f_1(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}.$$

(2.38)

In fact, we know that here \sim can be replaced by $=$ (in the usual sense) for all x, and in particular for all $x \in [0, L]$ where $f_1(x) = f(x)$; thus we obtain

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \quad 0 \leq x \leq L,$$

again in the sense of (1.31) or (1.32). But this is just the half-range sine series (2.32), and (2.37) is just the formula for the coefficients that we obtained in (2.36) above. We summarize:

Half range sine series: The half range sine series (2.32) or (2.38) is the Fourier series of the odd periodic extension f_1 of f; it converges to $f(x)$ for x in $[0, L]$ and the coefficients $c_n = b_n$ are given by (2.36). The orthonormal set of all function $\sin(n\pi x/L)$, $n = 1, 2, 3, \ldots$, is complete in $C_p[0, L]$.

In addition to the half range sine series there are three other commonly used Fourier-like series expansions of a function $f(x)$ defined on $[0, L]$. Each is associated with a particular boundary value problem like (2.33) (or equivalently an initial/boundary value problem like (2.22)) and is the true Fourier series of some extension of $f(x)$ from $[0, L]$ to the entire line. The development in each case is almost exactly parallel to the development of the half range sine series above. We will therefore discuss the first two of these—the half
range cosine and quarter range sine series—very briefly, but to further illustrate the ideas we will give some of the computations for the third—the quarter range cosine series—in more detail.

C. The half range cosine series of \(f \). Consider the initial/boundary value problem

PDE: \[u_t(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 < x < L, \quad t > 0, \]

BC: \[u_x(0,t) = 0 \text{ and } u_x(L,t) = 0, \quad t > 0 \] (2.39)

IC: \[u(x,0) = f(x), \quad 0 < x < L. \]

This is the same as the problem (2.22) considered above except that the boundary condition there has been replaced by a homogeneous Neumann boundary condition, that is, a condition involving only the partial derivative \(u_x(x,t) \) at the boundaries. Applying separation of variables as in Section 2.2 leads to a boundary value problem similar to (2.33):

ODE: \[X''(x) = -\lambda X(x) \quad \text{for some } \lambda, \quad 0 < x < L, \] (2.40a)

BC: \[X'(0) = 0, \quad X'(L) = 0. \] (2.40b)

This is analyzed just as in Section 2.2: this time we find that one possible value of \(\lambda \) is \(\lambda_0 = 0 \), with corresponding solution \(X_0(x) = 1 \). The other possible values of \(\lambda \) are \(\lambda_n = (n\pi/L)^2, \quad n = 1, 2, \ldots \), with solutions \(X_n(x) = \cos(n\pi x/L) \). In each case we solve (2.27a) to find \(T_n(t) = \exp(-\alpha^2 \lambda_n t) \). Thus we can solve (2.39), with solution of the form

\[
u(x,t) = \sum_{n=0}^{\infty} a_n X_n(x) T_n(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} e^{-(\alpha n\pi/L)^2 t},\]

if every function \(f(x) \) may we written as a half range cosine series:

\[
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}, \quad 0 \leq x \leq L. \] (2.41)

To investigate (2.41) we first note that the functions \(X_n(x), \quad n = 0, 1, 2, \ldots \), form an orthogonal set in \(C_p[0,L] \) (Exercise: verify this), leading via (1.24) to the formulas

\[
a_0 = \frac{1}{L} \int_0^L f(x) \, dx, \quad a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} \, dx, \quad n = 0, 1, 2, \ldots . \] (2.42)

We then consider the even periodic extension \(f_2(x) \) of \(f(x) \) with period \(2L \), which we also call the half range cosine extension of \(f \); this is defined by first extending \(f(x) \) to an even function on \([-L,L]\) and then to a periodic function on all of \(\mathbb{R} \); see Figure 2.2. \(f_2(x) \) has a Fourier series which, on the interval \([0,L]\), coincides with the series in (2.41), and has coefficients given by (2.42); the fact that the Fourier series converges to \(f_2 \) guarantees that (2.41) holds, i.e., that the orthogonal set of functions \(X_n, \quad n = 0, 1, 2, \ldots \), is complete. Briefly:
Half range cosine series: The half range cosine series (2.41) is the Fourier series of the even periodic extension \(f_2\) of \(f\); it converges to \(f(x)\) for \(x\) in \([0, L]\) and the coefficients \(a_n\) are given by (2.42). The orthogonal set consisting of 1 and of all functions \(\cos(n\pi x/L)\), \(n = 1, 2, 3, \ldots\), is complete in \(C_p[0, L]\).

D. The quarter range sine series of \(f\). Consider the initial/boundary value problem

PDE: \[u_t(x, t) = \alpha^2 u_{xx}(x, t), \quad 0 < x < L, \quad t > 0, \]
BC: \[u(0, t) = 0 \quad \text{and} \quad u_x(L, t) = 0, \quad t > 0 \]
(2.43)

IC: \[u(x, 0) = f(x), \quad 0 < x < L. \]

This is the same as the problems (2.22) and (2.39) considered above except that the we now have a homogeneous Dirichlet boundary condition at \(x = 0\) and a homogeneous Neumann boundary condition at \(x = L\). Separation of variables leads to the boundary value problem

ODE: \[X''(x) = -\lambda X(x) \quad \text{for some} \ \lambda, \quad 0 < x < L, \]
(2.44a)
BC: \[X(0) = 0, \quad X'(L) = 0. \]
(2.44b)

Now the possible values of \(\lambda\) are of the form \(\lambda_n = (n\pi/2L)^2\) with \(n\) odd; the solutions are \(X_n(x) = \sin(n\pi x/2L)\), and we then solve (2.27a) to find \(T_n(t) = \exp(-\alpha^2\lambda_n t)\). Thus we can solve (2.43), with solution of the form

\[u(x, t) = \sum_{n \text{ odd}} b_n X_n(x) T_n(t) = \sum_{n \text{ odd}} b_n \sin \frac{n\pi x}{2L} e^{-\left(\alpha n\pi/2L\right)^2 t}, \]

if every function \(f(x)\) may we written as a quarter range sine series:

\[f(x) = \sum_{n \text{ odd}} b_n \sin \frac{n\pi x}{2L}, \quad 0 \leq x \leq L. \]
(2.45)

Again the functions \(X_n(x), n\) odd, form an orthogonal set in \(C_p[0, L]\) (Exercise: verify this), leading via (1.24) to the formulas

\[b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{2L} \, dx, \quad n \text{ odd}. \]
(2.46)

The quarter range sine extension of \(f(x)\), \(f_3(x)\), is an extension of period \(4L\); to obtain it we first extend \(f(x)\) to the interval \([0, 2L]\) in such a way that it is symmetric around \(x = L\) (the formula is \(f(x) = f(2L - x)\) for \(x\) in \([L, 2L]\)), extend this function to an odd function on \([-2L, 2L]\), and then make a periodic extension to all of \(\mathbb{R}\) (see Figure 2.2). \(f_3(x)\) has a Fourier series which, on the interval \([0, L]\), coincides with the series in (2.51), and has coefficients given by (2.52); the fact that the Fourier series converges to \(f_3\) guarantees that (2.51) holds, i.e., that the orthogonal set of functions \(X_n, n = 1, 3, 5, \ldots\), is complete.
Quarter range sine series: The quarter range sine series (2.51) is the Fourier series of the quarter range sine periodic extension \(f_3\) of \(f\); it converges to \(f(x)\) for \(x\) in \([0, L]\) and the coefficients \(b_n\) are given by (2.52). The orthogonal set consisting of all functions \(\sin(n\pi x/2L)\), \(n\) odd, is complete in \(C_p[0, L]\).

E. The quarter range cosine series of \(f\). Now we consider the initial/boundary value problem

\[
PDE: \quad u_t(x, t) = \alpha^2 u_{xx}(x, t), \quad 0 < x < L, \quad t > 0, \\
BC: \quad u_x(0, t) = 0 \quad \text{and} \quad u(L, t) = 0, \quad t > 0 \quad (2.47)
\]

that is, we impose a homogeneous Neumann boundary condition at \(x = 0\) and a homogeneous Dirichlet condition at \(x = L\). Separation of variables leads to the boundary value problem

\[
ODE: \quad X''(x) = -\lambda X(x) \quad \text{for some} \lambda, \quad 0 < x < L, \quad (2.48a) \\
BC: \quad X'(0) = 0, \quad X(L) = 0. \quad (2.48b)
\]

Just as in Section 2.2 the form of the solutions of the differential equation (2.48a) depend on the sign of \(\lambda\); the alternatives are as in (2.28), which we reproduce in part here:

\[
\begin{array}{ll}
\lambda & X(x) \\
(I) & \lambda = \kappa^2 > 0 \quad A \cos \kappa x + B \sin \kappa x \\
(II) & \lambda = 0 \quad A + Bx \\
(III) & \lambda = -\kappa^2 \quad A \cosh \kappa x + B \sinh \kappa x
\end{array}
\quad (2.49)
\]

We now carry out, for each of the three cases in (2.49), the analysis of which solutions can satisfy the boundary condition.

(I) Since \(X(x) = A \cos \kappa x + B \sin \kappa x\), \(X'(0) = kB\) and since \(k \neq 0\) (the case \(\lambda = 0\) is case II), (2.48b) tells us that \(B = 0\) and so \(X(L) = A \cos \kappa L\). Now \(X(L) = 0\) requires either that \(A = 0\) or \(\cos \kappa L = 0\). As usual we reject the first possibility (which leads to \(X(x) = 0\) for all \(x\)); the second possibility requires that \(\kappa = n\pi/2L\) for some odd value of \(n\). Then \(\lambda_n = (n\pi/2L)^2\), \(n = 1, 3, 5, \ldots\), and we have solutions of (2.48):

\[
X_n(x) = \cos \frac{n\pi x}{2L}, \quad \lambda_n = \frac{n^2\pi^2}{L^2}, \quad n = 1, 3, 5, \ldots. \quad (2.50)
\]

(II) Since \(X(x) = A + Bx\), \(X'(0) = 0\) and (2.29) requires that \(B = 0\). Then \(X(x) = A\) and in particular \(X(L) = A\); thus (2.48b) requires that \(B = 0\). Case II leads to no interesting solutions.

(III) Since \(X(x) = A \cosh \kappa x + B \sinh \kappa x\), \(X'(0) = b\) and (2.48b) requires that \(B = 0\) and so \(X(x) = A \cosh \kappa x\) and \(X(L) = A \cosh \kappa L\); since \(\cosh u > 0\) for all \(u\), \(X(L) = 0\) requires that \(A = 0\) and we have only the (uninteresting) zero solution.
We conclude that (2.50) gives all solutions of the boundary value problem (2.48).

The function \(T_n(t) \) associated with \(\lambda_n \) is still \(T_n(t) = \exp(-\alpha^2 \lambda_n t) \), and so we propose a solution of the initial/boundary value problem (2.47) in the form

\[
 u(x, t) = \sum_{n \text{ odd}} a_n X_n(x) T_n(t) = \sum_{n \text{ odd}} a_n \cos \frac{n \pi x}{2L} e^{-(\alpha n \pi/2L)^2 t}.
\]

We can then solve the initial value problem if every function \(f(x) \) defined on \([0, L]\) may we written as a *quarter range cosine series*:

\[
 f(x) = \sum_{n \text{ odd}} a_n \cos \frac{n \pi x}{2L}, \quad 0 \leq x \leq L. \tag{2.51}
\]

The investigation of (2.51) is parallel to similar discussions above. The functions \(X_n(x), n \text{ odd} \), form an orthogonal set in \(C_p[0, L] \) (Exercise: verify this). Thus we know that the right hand side of (2.51) is the best possible approximation to \(f(x) \) if we take

\[
 a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n \pi x}{2L} \, dx, \quad n = 1, 3, 5, \ldots. \tag{2.52}
\]

In order to verify the equality in (2.51) we then consider the *quarter range cosine extension* \(f_4(x) \) of \(f(x) \), which has period \(4L \). Let us define this very carefully. We first extend \(f(x) \) to a function \(g(x) \) on the interval \([0, 2L]\) in such a way that \(g \) is *antisymmetric* under reflection across \(x = L \), that is, by defining \(g(x) = f(x) \) for \(x \) in \([0, L]\) and \(g(x) = -f(2L - x) \) for \(x \) in \([L, 2L]\). Next we extend \(g(x) \) to an *even function* \(h(x) \) on \([−2L, 2L]\), defining \(h(x) = g(x) \) if \(x \) lies in \([0, 2L]\) and \(h(x) = g(-x) \) if \(x \) lies in \([-2L, 0]\). Finally we take \(f_4(x) \) to be the periodic extension \(h_{\text{per}} \) of \(h \) (which will have period \(4L \)): \(f_4(x) = h_{\text{per}}(x) \). See Figure 2.4.

Now \(f_4(x) \) has a Fourier series of the form

\[
 f_4(x) \sim a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n \pi x}{2L} + b_n \sin \frac{n \pi x}{2L} \right). \tag{2.53}
\]

Because \(f_4 \) is an even function we know that the coefficients \(b_n \) all vanish, but we also want to show that the coefficients \(a_n \) are such that (2.53) reduces to (2.51) with coefficients given by (2.52). We evaluate the coefficients \(a_n \) in (2.53) using (2.6) and the fact that \(f_4(x) = g(x) \) on the interval \([0, 2L]\):

\[
 a_0 = \frac{1}{2L} \int_0^{2L} f_4(x) \, dx = \frac{1}{2L} \int_0^{2L} g(x) \, dx = \frac{1}{2L} \left[\int_0^L g(x) \, dx + \int_L^{2L} g(x) \, dx \right] = \frac{1}{2L} \left[\int_0^L f(x) \, dx + \int_L^{2L} (-f(2L - x)) \, dx \right] = \frac{1}{2L} \left[\int_0^L f(x) \, dx - \int_0^L f(u) \, du \right] = 0, \tag{2.54}
\]
where at the last step we have made the substitution \(u = 2L - x \). We compute \(a_n \) for \(n > 0 \) similarly (we omit a few steps which can be easily reconstructed from (2.54)):

\[
a_n = \frac{1}{L} \int_0^{2L} g(x) \cos \frac{n\pi x}{2L} \, dx
= \frac{1}{L} \left[\int_0^L f(x) \cos \frac{n\pi x}{2L} \, dx - \int_L^{2L} f(2L - x) \cos \frac{n\pi x}{2L} \, dx \right]
= \frac{1}{L} \left[\int_0^L f(x) \cos \frac{n\pi x}{2L} \, dx - \int_0^L f(u) \cos \frac{n\pi (2L - u)}{2L} \, du \right]
= \frac{1}{L} \left[\int_0^L f(x) \cos \frac{n\pi x}{2L} \, dx + (-1)^{n+1} \int_0^L f(u) \cos \frac{n\pi u}{2L} \, du \right]
= \begin{cases}
0, & \text{if } n \text{ is even}, \\
\frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{2L} \, dx, & \text{if } n \text{ is odd}.
\end{cases}
\]

Here we have first made the substitution \(u = 2L - x \) and then used the identity \(\cos(n\pi - \theta) = (-1)^n \cos(\theta) \). We see that inserting (2.54), (2.55), and \(b_n = 0 \) into (2.53) yields (2.51) with (2.52)—that is, the quarter range cosine series (2.51) is essentially just the Fourier series of \(f_4 \).

Quarter range cosine series: The quarter range cosine series (2.51) is the Fourier series of the quarter range cosine extension \(f_4 \) of \(f \); it converges to \(f(x) \) for \(x \) in \([0, L] \) and the coefficients \(a_n \) are given by (2.52). The orthogonal set consisting of all functions \(\cos(n\pi x/2L), n = 1, 3, 5, \ldots \), is complete in \(C_p[0, L] \).

Remark 2.6: With each of the half and quarter range series considered in B through E above we associated a certain boundary value problem. The Fourier series considered in A is similarly associated with such a problem—one with *periodic boundary conditions*. We will study this problem when we discuss Sturm-Liouville problems.

2.4 Sturm-Liouville problems

No detailed notes on this topic have been prepared; see sections 17.7 and 17.8 of Greenberg.
2.5 Example: The heat equation in a disk

In this section we study the two-dimensional heat equation in a disk, since applying separation of variables to this problem gives rise to both a periodic and a singular Sturm-Liouville problem. The equation is

\[\alpha^2 \nabla^2 u(x, y, t) = \frac{\partial}{\partial t} u(x, y, t), \quad x^2 + y^2 \leq a^2; \]

here \(a \) is the radius of the disk (whose center is assumed to be located at the origin of our coordinate system) and \(b \nabla^2 \), also written as \(\Delta \), is the two-dimensional Laplacian, that is, \(\nabla^2 u = u_{xx} + u_{yy} \). We will impose a homogeneous Dirichlet boundary condition at the boundary of the disk, i.e., require that \(u(x, y, t) = 0 \) if \(x^2 + y^2 = a^2 \); this could easily be replaced by a Neumann or Robin boundary condition. We will also impose an initial condition specifying the temperature distribution at time \(t = 0 \).

Since the domain and the PDE have rotational symmetry it is natural to work in polar coordinates \((r, \theta)\), where \(x = r \cos \theta \) and \(y = r \sin \theta \). We must then rewrite the \(x \) and \(y \) derivatives contained in \(\nabla^2 \) as derivatives with respect to \(r \) and \(\theta \). The result is derived in Section 16.7 of our text by Greenberg, with the final result appearing in equation (18), which to avoid confusion with equations in these notes we will write as (G.16.7.18). That equation refers to cylindrical coordinates, but to pass to polar coordinates one simply neglects all derivatives with respect to \(z \). The \(r \) derivatives appearing in (G.16.7.18) can conveniently be rewritten as

\[\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \equiv \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right). \]

Thus our problem becomes

\[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}, \quad 0 \leq r < a, \quad 0 \leq \theta < 2\pi, \quad t > 0; \quad (2.56) \]

\[u(a, \theta, t) = 0, \quad 0 \leq \theta < 2\pi, \quad t > 0; \quad (2.57) \]

\[u(r, \theta, 0) = f(r, \theta), \quad 0 \leq r < a, \quad 0 \leq \theta < 2\pi. \quad (2.58) \]

To attack this problem we will first find, by separation of variables, solutions of the PDE (2.56) that also satisfy the boundary conditions (2.57); then we will form a solution that also satisfies the initial condition (2.58) as a superposition of these product solutions.

To apply the separation of variables method we look for solutions of (2.56) in the form

\[u(r, \theta, t) = R(r)\Theta(\theta)T(t). \]

Inserting this proposed solution into (2.56) leads to

\[\frac{\Theta T}{r} \frac{d}{dr} \left(r \frac{dR}{dr} \right) + \frac{RT}{r^2} \frac{d^2 \Theta}{d\theta^2} = \frac{R\Theta}{\alpha^2} \frac{dT}{dt}. \]
We divide this equation by $R\Theta T$ to obtain

$$\frac{1}{r} \left(\frac{rR'}{R} \right)' + \frac{1}{r^2} \frac{\Theta''}{\Theta} = \frac{1}{\alpha^2} \frac{T'}{T}. \quad (2.59)$$

The left hand side of (2.59) depends only on r and θ, while the right hand side depends only on t; this is possible only if both sides are constant. Let us call this constant $-\lambda$; then we have

$$\frac{1}{r} \left(\frac{rR'}{R} \right)' + \frac{1}{r^2} \frac{\Theta''}{\Theta} = -\lambda \quad \text{and} \quad \frac{1}{\alpha^2} \frac{T'}{T} = -\lambda. \quad (2.60)$$

The second equation in (2.60) is easily solved for $T(t)$:

$$T(t) = e^{-\lambda \alpha^2 t}. \quad (2.61)$$

Remark 2.7: Let us discuss more carefully why (2.60) follows from (2.59). Equation (2.59) has the form $G(r, \theta) = H(t)$, and this equality is supposed to hold for all r, θ, t. Now choose any fixed values r_1 and θ_1 of the variables r and θ, and define λ by $G(r_1, \theta_1) = -\lambda$. But now for any t, $H(t) = G(r_1, \theta_1) = -\lambda$, which is just the second equation in (2.60). The first equation in (2.60) follows similarly.

Now we turn to the first equation in (2.60) and again separate variables—that is, we write this equation in the form

$$-\frac{\Theta''}{\Theta} = \lambda r^2 + r \frac{(rR')'}{R}. \quad (2.62)$$

The left hand side of (2.62) depends only on θ and the right hand side only on r, so that each must be constant:

$$-\frac{\Theta''}{\Theta} = \mu \quad \text{and} \quad \lambda r^2 + r \frac{(rR')'}{R} = \mu. \quad (2.63)$$

Thus we now have two more ODE’s to solve. As we will see, each of these is a Sturm-Liouville problem of a special type.

To solve the first equation in (2.63) for $\Theta(\theta)$, and to determine μ in the process, we need to impose suitable boundary conditions. Now θ, the polar angle, can be thought of as satisfying $0 \leq \theta < 2\pi$, but the endpoints of this interval are not really boundaries; nothing special happens at these values of θ. In fact, we should identify all values of θ differing by multiples of 2π, since all the points $\theta + 2n\pi$, $n = 0, \pm 1, \pm 2, \ldots$, represent the same physical ray in the plane. Because of this, we would like $\Theta(\theta)$ to be a periodic function of θ with period 2π, so that $\Theta(\theta + 2n\pi) = \Theta(\theta)$ for all n. We can achieve this by imposing *periodic boundary conditions*, leading to the problem

$$\Theta'' + \mu \Theta = 0, \quad 0 < \theta < 2\pi, \quad (2.64a)$$

$$\Theta(0) = \Theta(2\pi), \quad \Theta'(0) = \Theta'(2\pi) \quad (2.64b)$$
We will see shortly that these boundary conditions will force the solutions of (2.64) to be periodic functions with period 2π.

Remark 2.8: Problem (2.64) is a special case of a *Sturm-Liouville* problem. Recall the *regular* Sturm-Liouville problem studied in Section 17.7:

$$
[p(x)y']' + q(x)y + \lambda w(x)y = 0, \quad a < x < b,
$$

(2.65a)

$$
\alpha y(a) + \beta y(a) = 0, \quad \gamma y(b) + \delta y(b) = 0;
$$

(2.65b)

where

(i) $\infty < a < b < \infty$,

(ii) $w(x)$, $p(x)$, $p'(x)$, and $q(x)$ are real-valued and continuous on $[a, b]$,

(iii) $p(x)$ and $w(x)$ are strictly positive on $[a, b]$,

(iv) α, β, γ, and δ are real, and neither both α and β, nor both γ and δ, are zero.

The boundary conditions (2.65b) are called *separated*, since there is one boundary condition at a and an independent one at b. Now our PDE (2.64a) is a special case of (2.65a), obtained by taking $a = 0$, $b = 2\pi$, $p(x) = w(x) = 1$, and $q(x) = 0$, but the boundary conditions link the values of y and y' at a and b. These are called *periodic* boundary conditions, and the problem (2.64) is a *periodic Sturm-Liouville problem*.

To solve (2.64) we consider separately the cases $\mu = 0$, $\mu > 0$, and $\mu < 0$;

Case A: $\mu = 0$. The general solution of $\Theta'' = 0$ is $\Theta(\theta) = A + B\theta$, and the boundary condition $\Theta(0) = \Theta(2\pi)$ requires that $B = 0$. The remaining solution $\Theta = A$ satisfies both boundary conditions. The factor A is irrelevant to our purposes, since we are looking only for one solution; later we will restore this constant when we form a linear combination of the solutions that we have found. So we take

$$
\mu_0 = 0, \quad \Theta_0(\theta) = 1.
$$

(2.66)

Case B: $\mu > 0$. The general solution of (2.64a) is now $\Theta(\theta) = A \cos \sqrt{\mu} \theta + B \sin \sqrt{\mu} \theta$, and the boundary conditions (2.64b) imply that

$$
A = A \cos 2\pi \sqrt{\mu} + B \sin 2\pi \sqrt{\mu}, \quad B = -A \sin \pi \sqrt{\mu} + B \cos 2\pi \sqrt{\mu},
$$

or

$$
\begin{bmatrix}
\cos 2\pi \sqrt{\mu} - 1 & \sin 2\pi \sqrt{\mu} \\
-\sin \pi \sqrt{\mu} & \cos 2\pi \sqrt{\mu} - 1
\end{bmatrix}
\begin{bmatrix}
A \\
B
\end{bmatrix} = 0.
$$

This homogeneous linear system can have a nonzero solution only if the determinant of the coefficient matrix vanishes, which leads to $\cos 2\pi \sqrt{\mu} = 1$, so that $\sqrt{\mu} = n$ for some integer n. The case $n = 0$, where $\mu = 0$, was discussed separately in case A. The boundary conditions (2.64b) are automatically satisfied, and we find

$$
\mu_n = n^2, \quad \Theta_{n,1} = \cos n\theta, \quad \Theta_{n,2} = \sin n\theta, \quad n = 1, 2, \ldots
$$

(2.67)
Case C: $\mu < 0$. The solution of (2.64b) is now $\Theta(\theta) = A \cosh \sqrt{-\mu} \theta + B \sinh \sqrt{-\mu} \theta$. The analysis proceeds as in Case B, but now we find that μ must satisfy $\cosh 2\pi \sqrt{-\mu} = 1$; the only solution of this equation is $\mu = 0$, which was considered separately in Case A, so there are no negative eigenvalues.

Note that, as promised, the eigenfunctions given in (2.66) and (2.67) are all periodic with period 2π.

Remark 2.9: For the regular Sturm-Liouville problem discussed in Section 17.7, all eigenvalues are simple, that is, for each eigenvalue there is precisely one eigenfunction (up to multiplication by a constant). We see from (2.67) that in a periodic Sturm-Liouville problem the eigenvalues can be degenerate.

Now that we have the eigenvalues (2.66) and (2.67) for the Θ problem (2.64) we return to the problem of finding λ and the corresponding functions $R(r)$. The differential equation to be solved is the second equation in (2.63), which is to hold for $0 < r < a$. The boundary condition (2.57) that $u(r, \theta, t)$ vanish on the boundary $r = 1$ of the disk obviously implies that we should require that $R(a) = 0$. But what boundary condition should we impose at $r = 0$? This corresponds to the center of the disk and is not really a boundary in the original problem; all we want to require is that our solution be well-behaved—say, bounded—at the center. Does this make sense as a boundary condition for $R(r)$?

Remark 2.10: To understand the situation let us write our DE (2.63) in a form which looks like the standard Sturm-Liouville form (2.65a). If we are studying the eigenvalue $\mu_n = n^2$ from the periodic Sturm-Liouville problem for Θ then this form is:

$$ [rR']' - \frac{n^2}{r} R + \lambda r R = 0. \quad (2.68) $$

We see that this is of the same form as (2.65a), with $p(r) = r$, $q(r) = -n^2/r$, and $w(r) = r$. But notice that $p(0) = 0$, whereas in the regular Sturm-Liouville problem we required p to be strictly positive everywhere (see Remark 2.8, condition (iii)). We say the the Sturm-Liouville problem with equation (2.68) is singular at $r = 0$. For such a problem we cannot usually require a boundary condition of the type (2.65b); rather, requiring that $R(r)$ be bounded near $r = 0$ is a natural condition. This is because $r = 0$ is a singular point of the differential equation (2.68) in the sense of Chapter 4, and one of two linearly independent solutions of such an equation will usually be unbounded at $r = 0$.

Thus, multiplying (2.68) by r and expanding the derivatives, we find that for each value of n, $n = 0, 1, 2, \ldots$, we must solve the singular Sturm-Liouville problem

$$ r^2 R'' + r R' + (\lambda r^2 - n^2) R = 0, \quad 0 < r < a; \quad (2.69a) $$
$$ R(a) = 0, \quad R(r) \text{ bounded as } r \to 0. \quad (2.69b) $$

In fact all solutions of this problem have $\lambda > 0$; we will assume that this is true without verifying it. Then the change of variables $s = r\sqrt{\lambda}$ transforms (2.69a) to the Bessel equation of order n:

$$ s^2 \ddot{R} + s \dot{R} + (s^2 - n^2) R = 0 $$

640:527 Fall 2014
But $Y_n(r)$ is unbounded as $r \to 0$; thus the second boundary condition in (2.69b) requires that $B = 0$. The first then requires that $J_n(\sqrt{\lambda} a) = 0$. Now $J_n(s)$ has an infinite number of positive zeros, which we will denote by z^n_k, where $0 < z^n_1 < z^n_2 < \cdots$; Figure 2.3 shows plots of $J_0(s)$ and $J_3(s)$, with the zeros of each labeled. Thus we can achieve $J_n(\sqrt{\lambda} a) = 0$ precisely by taking λ to be one of the values $\lambda^n_k = (z^n_k/a)^2$. That is, for each n, $\lambda_1^n, \lambda_2^n, \ldots$ are the eigenvalues of the problem (2.69). For each n, k we will let $\phi^n_k(r)$ denote the corresponding eigenfunction. Thus for $n = 0, 1, \ldots$ and $k = 1, 2, \ldots$,:

$$\lambda^n_k = \left(\frac{z^n_k}{a}\right)^2, \quad \phi^n_k(r) = J_n\left(\sqrt{\lambda^n_k} r\right) = J_n\left(z^n_k r/a\right). \quad (2.70)$$
Summary: We have found the following solutions to our original PDE (2.56) which satisfy the boundary condition (2.57) (see (2.61), (2.66), (2.67), and (2.70)):

\[u(r, \theta, t) = \phi_0^k(r)e^{-(z_0^k \alpha/a)^2t}, \quad k = 1, 2, 3, \ldots, \quad (2.71a) \]

and for \(n = 1, 2, 3, \ldots, \)

\[u(r, \theta, t) = \phi_n^k(r) \cos(n \theta)e^{-(z_n^k \alpha/a)^2t}, \quad k = 1, 2, 3, \ldots \quad (2.71b) \]

and

\[u(r, \theta, t) = \phi_n^k(r) \sin(n \theta)e^{-(z_n^k \alpha/a)^2t}, \quad k = 1, 2, 3, \ldots \quad (2.71c) \]

In these formulas \(\phi_n^k(r) = J_n(z_n^k r/a), \) with \(z_n^k \) the \(k \)th zero of \(J_n(s) \).

Finally we take up the problem of satisfying the initial condition (2.58). Since the PDE (2.56) and boundary condition (2.57) are linear and homogeneous, any linear combination of the solutions (2.71) found above will also satisfy (2.56) and (2.57). Thus we look for a solution of our problem in the form

\[u(r, \theta, t) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \phi_0^k(r) e^{-(z_0^k \alpha/a)^2t} + \phi_n^k(r) \left[c_n^k \cos(n \theta) + d_n^k \sin(n \theta) \right] e^{-(z_n^k \alpha/a)^2t}. \quad (2.72) \]

We must answer the crucial question: can we choose the constants \(c_n^k \) so that the solution (2.72) satisfies the initial condition, i.e., so that

\[f(r, \theta) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \phi_0^k(r) + \phi_n^k(r) \left[c_n^k \cos(n \theta) + d_n^k \sin(n \theta) \right], \quad (2.73) \]

and if the answer is yes, how do we compute the correct constants?

Remark 2.11: Recall how this question is answered for the one-dimensional regular Sturm-Liouville problem (see Remark 2.8): if the eigenfunctions of the problem are \(\phi_n(x) \) then any function \(f(x) \) defined for \(a < x < b \) can be expanded as

\[f(r, \theta) = \sum_n c_n \phi_n(x) \quad c_n = \frac{\langle f(x), \phi_n(x) \rangle_w}{\langle \phi_n(x), \phi_n(x) \rangle_w}, \quad (2.74) \]

where

\[\langle g(x), h(x) \rangle_w = \int_a^b g(x)h(x)w(x) \, dx. \quad (2.75) \]

Our text does not state general results for singular or periodic Sturm-Liouville problems, but in most cases, and in particular for the two problems (2.64) and (2.69) encountered in these notes, the same formulas apply.
To apply this remark to (2.73) we first consider \(f(r, \theta) \) as a function of \(\theta \), for fixed \(r \). The function \(f(r, \theta) \) should of course be viewed as periodic in \(\theta \), with period \(2\pi \), again because angles differing by multiple of \(2\pi \) represent the same physical point. As such a function it has a Fourier series expansion in terms of \(\cos nx \) and \(\sin nx \), but of course the coefficients will depend on the value of \(r \). Thus we know that there is an expansion

\[
f(r, \theta) = a_0(r) + \sum_{n=1}^{\infty} \left[a_n(r) \cos n\theta + b_n(r) \sin n\theta \right],
\]

with

\[
a_0(r) = \frac{1}{2\pi} \int_0^{2\pi} f(r, \theta) \, d\theta,
\]

\[
a_n(r) = \frac{1}{\pi} \int_0^{2\pi} f(r, \theta) \cos n\theta \, d\theta, \quad n \geq 1,
\]

\[
b_n(r) = \frac{1}{\pi} \int_0^{2\pi} f(r, \theta) \sin n\theta \, d\theta, \quad n \geq 1.
\]

(2.77)

Here we have referred to (2.76) as the usual Fourier series, but we can just as well think of it as the Sturm-Liouville series (2.74) associated with the periodic Sturm-Liouville problem (2.64).

Now we expand each of the functions \(a_0(r), a_n(r), \) and \(b_n(r) \) in the Sturm-Liouville series (2.74) associated with the singular Sturm-Liouville problem (2.69). The eigenfunctions are the \(\phi_k^n(r) \) given in (2.70); thus we have

\[
a_0(r) = \sum_{k=1}^{\infty} c_k^0 \phi_k^0(r), \quad a_n(r) = \sum_{k=1}^{\infty} c_k^n \phi_k^n(r), \quad b_n(r) = \sum_{k=1}^{\infty} d_k^n \phi_k^n(r), \quad n \geq 1.
\]

(2.78)

Inserting the formulas (2.78) into (2.76) yields precisely the desired expansion (2.73). The coefficients \(c_k^0, c_k^n, \) and \(d_k^n \) are given by the formula in (2.74). Note that here \(w(r) = r \) (see Remark 2.10), so

\[
c_k^0 = \frac{\int_0^{a} a_0(r) \phi_k^0(r) \, r \, dr}{\int_0^{a} \phi_k^0(r)^2 \, r \, dr}, \quad c_k^n = \frac{\int_0^{a} a_n(r) \phi_k^n(r) \, r \, dr}{\int_0^{a} \phi_k^n(r)^2 \, r \, dr}, \quad d_k^n = \frac{\int_0^{a} b_n(r) \phi_k^n(r) \, r \, dr}{\int_0^{a} \phi_k^n(r)^2 \, r \, dr},
\]

(2.79)

where as usual \(n \geq 1 \). Equations (2.76) and (2.78) answer the first part of the “crucial question” posed above affirmatively, while (2.77) and (2.79) give the formulas for the coefficients.

Finally, we want to note another way of looking at (2.79). Let us write \(\psi_k^n \) for the functions which appear in our solution (2.72):

\[
\psi_k^n(r, \theta) = \phi_k^n(r), \quad \psi_{k,1}^n(r, \theta) = \phi_k^n(r) \cos n\theta, \quad \psi_{k,2}^n(r, \theta) = \phi_k^n(r) \sin n\theta, \quad n, k \geq 1.
\]
Then with (2.77) the equations (2.79) become

\[
\begin{align*}
 c_k &= \frac{\int_0^a \int_0^{2\pi} f(r, \theta) \psi_k^0(r, \theta) r \, d\theta \, dr}{\int_0^a \int_0^{2\pi} \psi_k^0(r, \theta)^2 r \, d\theta \, dr}, \\
 c_n^k &= \frac{\int_0^a \int_0^{2\pi} f(r, \theta) \psi_{k,1}^n(r, \theta) r \, d\theta \, dr}{\int_0^a \int_0^{2\pi} \psi_{k,1}^n(r, \theta)^2 r \, d\theta \, dr}, \\
 d_n^k &= \frac{\int_0^a \int_0^{2\pi} f(r, \theta) \psi_{k,2}^n(r, \theta) r \, d\theta \, dr}{\int_0^a \int_0^{2\pi} \psi_{k,2}^n(r, \theta)^2 r \, d\theta \, dr}.
\end{align*}
\]

(2.80a)

But with (2.80) the expansion (2.73) is just a two-dimensional version of (2.74):

\[
\begin{align*}
 f(r, \theta) &= \sum_{k=1}^\infty c_k^0 \psi_k^0(r, \theta) + \sum_{k=1}^\infty \left[c_n^k \psi_{k,1}^n(r, \theta) + d_n^k \psi_{k,2}^n(r, \theta) \right], \\
 c_k^0 &= \frac{\langle f, \psi_k^0 \rangle}{\langle \psi_k^0, \psi_k^0 \rangle}, \\
 c_n^k &= \frac{\langle f, \psi_{k,1}^n \rangle}{\langle \psi_{k,1}^n, \psi_{k,1}^n \rangle}, \\
 d_n^k &= \frac{\langle f, \psi_{k,2}^n \rangle}{\langle \psi_{k,2}^n, \psi_{k,2}^n \rangle}, \\
 n, k &\geq 1,
\end{align*}
\]

where \(\langle g(r, \theta), h(r, \theta) \rangle = \int_0^a \int_0^{2\pi} g(r, \theta) h(r, \theta) r \, d\theta \, dr. \)
2.6 The Fourier transform

In this section we begin with a function \(f(x) \) which is defined for all \(x \) but is not periodic; rather, our basic assumption throughout is that it makes sense to integrate \(f(x) \) over all values of \(x \):

\[
\int_{-\infty}^{\infty} |f(x)| \, dx < \infty. \tag{2.81}
\]

Our goal is to obtain a representation of \(f(x) \) which is analogous to the expansion of a periodic function in a Fourier series. The place of the Fourier coefficients \(a_n \) and \(b_n \) (or equivalently \(c_n \), for the complex form of the Fourier series) is taken by a new quantity \(\hat{f}(\omega) \), called the Fourier transform of \(f(x) \) and also written \(\mathcal{F}\{f(t)\} \):

\[
\hat{f}(\omega) = \mathcal{F}\{f(t)\}(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} \, dx. \tag{2.82}
\]

Here \(\omega \) is a real variable which is analogous to the index \(n \) on the Fourier coefficients; we think of \(\omega \) as a frequency variable, since (as a function of \(x \)) the exponential \(e^{-i\omega x} \) oscillates with frequency \(\omega \). What is surprising is that the inverse Fourier transform, which takes us back from \(\hat{f}(\omega) \) to \(f(t) \), is given by a very similar integral:

\[
f(t) = \mathcal{F}^{-1}\{\hat{f}(\omega)\}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} \, dx. \tag{2.83}
\]

A more precise version of (2.83) is given in Theorem 2.1 below. Although we will not prove this theorem rigorously, we now give a heuristic discussion of why (2.83) it holds and of the relation of the Fourier transform to the Fourier series that we discussed earlier.

We begin by considering the Fourier series of a certain periodic function \(f_\ell(x) \), where \(\ell \) is a positive number, obtained from \(f(x) \) in a two step process: we first let \(h(x) \) be the restriction of \(f(x) \) to the interval \([-\ell, \ell]\), and then let \(f_\ell(x) \) be the periodic extension of \(h(x) \) to all of \(\mathbb{R} \):

First: \(h(x) = f(x), \quad -\ell \leq x \leq \ell; \quad \text{Then:} \quad f_\ell(x) = h_{\text{per}}(x). \)

See Figure 2.4. (Eventually we will take a limit \(\ell \to \infty \).) Since \(f_\ell(x) \) is periodic, with period \(2\ell \), it has a (complex) Fourier series

\[
f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/\ell} \tag{2.84},
\]

with

\[
c_n = \frac{1}{2\ell} \int_{-\ell}^{\ell} f(x) e^{-in\pi x/\ell} \, dx. \tag{2.85}
\]

The exponential \(e^{-in\pi x/\ell} \) occurring in (2.85) corresponds to frequency \(\omega_n = n\pi/\ell \), and comparing (2.85) and (2.82) we see that

\[
c_n \approx \frac{1}{2\ell} \int_{-\infty}^{\infty} f(x) e^{-in\pi x/\ell} \, dx = \frac{1}{2\ell} \hat{f}\left(\frac{n\pi}{\ell}\right) = \frac{1}{2\ell} \hat{f}(\omega_n). \tag{2.86}
\]
Section 2.6 The Fourier transform

Figure 2.4: A function \(f(x) \) satisfying (2.81) and the corresponding \(f_\ell(x) \) for \(\ell = 10 \).

The approximation in the first step in (2.86) comes from replacing the integral from \(-\ell\) to \(\ell\) by an integral from \(-\infty\) to \(\infty\); we would expect this approximation to become more and more exact as \(\ell \to \infty\).

Now we study the integral \(
\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} \, dx
\)
which we have claimed in (2.83) gives the inverse Fourier transform. For \(-\ell < x < \ell\),
\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} \, dx \approx \sum_{n=-\infty}^{\infty} \hat{f}(\omega_n) e^{i\omega_n x} \Delta \omega \approx \sum_{n=-\infty}^{\infty} c_n e^{i\omega_n x} = f(x).
\] (2.87)

Here we have first approximated the integral as a Riemann sum, obtained by dividing the real line \((-\infty, \infty)\) into small intervals using the division points \(\omega_n, n = -\infty, \cdots, \infty\), so that the width of each interval is \(\Delta \omega = \omega_{n+1} - \omega_n = \pi/\ell\), and have then used the approximation \(\hat{f}(\omega_n) \approx 2\ell c_n\) from (2.86). The final equality, which holds for \(-\ell < x < \ell\), is just (2.84). Now consider sending \(\ell\) to infinity. The approximations in (2.87) should become better and better in this limit, and the range \(-\ell < x < \ell\) in which (2.87) holds will become the entire real line. Thus we expect that, for all \(x\),
\[
f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} \, dx.
\] (2.88)

This is the equation (2.83) which we wanted to justify. A more precise version of this result is given in the next theorem.

Theorem 2.1: Suppose that \(f(x)\) is defined for \(-\infty < x < \infty\), that \(f(x)\) and \(f'(x)\) are piecewise continuous, and that \(\int_{-\infty}^{\infty} |f(x)| \, dx < \infty\) (see (2.81)). Then
\[
\mathcal{F}^{-1}\{\hat{f}(\omega)\}(x) = \begin{cases}
 f(x), & \text{if } f \text{ is continuous at } x, \\
 \frac{f(x-) + f(x+)}{2}, & \text{for all } x.
\end{cases}
\]

There is a small table of Fourier transforms in Appendix D of Greenberg. But they are easy to calculate.
Example 2.1: (a) Suppose that \(a > 0 \) and let \(f(x) = H(x+a)-H(x-a) = \begin{cases} 1, & \text{if } |x| < a, \\ 0, & \text{if } |x| > a. \end{cases} \) Then

\[
\mathcal{F}\{f(x)\} = \hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x}dx = \int_{-a}^{a} e^{-i\omega x}dx = \frac{1}{-i\omega} (e^{-i\omega x} - e^{i\omega x}) = \frac{2}{\omega} \sin \omega x
\]

and

\[
f(x) = \mathcal{F}^{-1}\{\hat{f}(\omega)\} = 2 \int_{-\infty}^{\infty} \frac{\sin \omega x}{\omega} d\omega.
\]

(b) Let \(f(x) = e^{-ax}H(x) \), with \(a > 0 \). Then

\[
\mathcal{F}\{f(x)\} = \hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x}dx = \int_{0}^{\infty} e^{-(a+i\omega)x}dx = \frac{1}{a+i\omega}.
\]

The next proposition gives the most important properties of the Fourier transform.

Proposition 2.2: (a) The Fourier transform and inverse Fourier transform are linear: if \(\alpha \) and \(\beta \) are constants, then

\[
\mathcal{F}\{\alpha f(x) + \beta g(x)\} = \alpha \mathcal{F}\{f(x)\} + \beta \mathcal{F}\{g(x)\},
\]

\[
\mathcal{F}^{-1}\{\alpha \hat{f}(\omega) + \beta \hat{g}(\omega)\} = \alpha \mathcal{F}^{-1}\{\hat{f}(\omega)\} + \beta \mathcal{F}^{-1}\{\hat{g}(\omega)\},
\]

(2.89)

Proof: This follows immediately from the definitions (2.82) and (2.83).

(b) Suppose that \(f(x) \) is continuous, not just piecewise continuous, and has a derivative which is piecewise continuous and satisfies \(\int_{-\infty}^{\infty} |f'(x)|dx < \infty \) (see (2.81)). Then

\[
\mathcal{F}\{f'(x)\}(\omega) = i\omega \hat{f}(\omega)
\]

(2.90)

Similarly, if \(f(x), f'(x), \ldots f^{(n-1)}(x) \) are continuous, \(f^{(n)} \) is piecewise continuous, and \(\int_{-\infty}^{\infty} |f^{(k)}(x)|dx < \infty \) for \(k = 0, \ldots n \), Then

\[
\mathcal{F}\{f^{(n)}(x)\}(\omega) = (i\omega)^n \hat{f}(\omega)
\]

(2.91)

Proof: Equation (2.90) is obtained by integration by parts: