The Predator-Prey System

(Lotka-Volterra equations)

If x is the prey species and y the predator, then the Lotka-Volterra equations are

$$
\mathbf{x}^{\prime}=x(a-\alpha y), \quad y^{\prime}=y(-c+\gamma x)
$$

where a, c, α, and γ are positive constants. For the graphs that follow we take $a=1.4, c=2.0, \alpha=0.8$, and $\gamma=1.2$.

We plot the phase plane, followed by solution curves for two different initial conditions. It is a good exercise to trace a solution around a trajectory in the phase plane, noticing when x and y increase and decrease, and to compare the result with the soltuion curves. In each case you should see that the predator lags behind the prey by about $1 / 4$ of a period.

Solution curves (prey is red, predator blue) for $x(0)=y(0)=1$

