The Nonlinear Pendulum

The nonlinear pendulum equation is

$$
\theta^{\prime \prime}=-\frac{g}{l} \sin \theta-\gamma \theta^{\prime}
$$

where

- θ is the angle that the pendulum makes from a downward vertical axis, measured counterclockwise;
- g is the gravitational constant,
- l the length of the pendulum, and
- γ is a damping constant, here measured (MKS units) in $\sec ^{-1}$.

We take $g / l=1$ for simplicity and set $x=\theta, y=\theta^{\prime}$, so we are studying the nonlinear system

$$
x^{\prime}=y \quad y^{\prime}=\sin x-\gamma y
$$

Since $x=\theta$ is an angle, two points in the phase plane of the form (x, y) and $(x+2 n \pi, y)$ represent the same physical point.

Here are the equations again:

$$
x^{\prime}=y \quad y^{\prime}=\sin x-\gamma y .
$$

The system has critical points at $x=n \pi, y=0$, where

- If n is even then the pendulum is motionless, hanging down;
- If n is odd then the pendulum is motionless, balanced straight up;

The critical points for odd n are always saddle points. The critical points for even n can be centers (undamped case, $\gamma=0$), stable spirals (underdamped case) or stable nodes (overdamped case). We draw the phase plane in these three cases, taking $\gamma=0, \gamma=0.2$, and $\gamma=2.1$, repectively.

Trajectories: Undamped pendulum

Trajectories: Underdamped pendulum

Trajectories: Overdamped pendulum

