
CHAPTER 3

Partial Differential Equations

In Chapter 2 we studied the homogeneous heat equation in both one and two di-
mensions, using separation of variables. Here we extend our study of partial differential
equations in two directions: to the inclusion of inhomogeneous terms, and to the two other
most common partial differential equations encountered in applications: the wave equation
and Laplace’s equation.

3.1 Inhomogeneous problems: the method of particular solutions

In this section we will study to inhomogeneous problems only for the one-dimensional
heat equation on an interval, but the general principles we discuss apply to many other
problems as well. The homogeneous version of the problem we consider is obtained by
taking the general setup that we considered in Sections 2.2 and 2.3 but including more
general boundary conditions of the kind we considered for Sturm-Liouville problems (see
Section 7.7 of Greenberg):

PDE: ut(x, t) − ǫ2uxx(x, t) = 0, 0 < x < L, t > 0,

BC:
α u(0, t) + β ux(0, t) = 0 and

γ u(L, t) + δ ux(L, t) = 0,
t > 0 (3.1)

IC: u(x, 0) = f(x), 0 < x < L,

where α and β are not both zero, and neither are γ and δ. Note that we are now denoting
the thermal diffusivity by ǫ2 rather than as α2, to avoid conflict with the use of α in
specifying the boundary conditions. We have discussed in Sections 2.2 and 2.3 the standard
way to solve (3.1): by separation of variables. There we considered only Dirichlet and
Neumann boundary conditions, but the more general conditions in (3.1) are easily handled:
they simply lead to Sturm-Liouville eigenvalue problems, which we have also discussed.

Remark 3.1: Before taking up the inhomogeneous version of (3.1) we discuss briefly the
physical interpretation of the equations. Recall from Section 2.2 that the PDE describes the
temperature u(x, t), at (longitudinal) position x and time t, of a rod of length L, assumed
to be of such small cross section that we can regard the temperature as depending only
on x (i.e., not on coordinates transverse to the rod), and to have its lateral surface so well
insulated that heat can flow into or out of the rod only through the ends. The boundary
conditions control this heat flow through the ends. To understand how this comes about
one uses the fact that the current or flux of heat energy in rod at position x and time t,
q(x, t), is proportional to the gradient of the temperature:

q(x, t) = −kAux(x, t). (3.2)

Here k is a positive constant, called the thermal conductivity of the rod, and A is the
cross sectional area of the rod; the negative sign indicates that heat flows in the direction
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40 Chapter 3. Partial Differential Equations

opposite to the temperature gradient, that is, from hotter regions to cooler ones. Consider
now the boundary condition at the left end of the rod: α u(0, t) + βux(0, t) = 0.

• If β = 0 (and so α 6= 0) then this is the Dirichlet boundary condition u(0, t) = 0: the
left end of the rod is maintained at temperature zero. One usually thinks of achieving
this situation by putting the end of the rod in perfect thermal contact with a heat

reservoir at this temperature. There is no direct control over the heat flux through
this end.

• If α = 0 (and so β 6= 0) then this is the Neumann boundary condition ux(0, t) = 0.
From (3.2), then, the heat flux at the left end, q(0, t), is also zero, that is, this end is
insulated: no heat can enter or leave the rod at x = 0. The actual temperature at the
end does not enter into the boundary condition.

• If neither α nor β is zero then then this is a mixed or Robin boundary condition. Using
(3.2) it may be written as

q(0, t) = ηu(x, t), with η =
kAα

β
, (3.3)

so that the mixed boundary condition describes a situation in which the heat flux
through the end of the rod is proportional to the temperature there. If η < 0 then
heat leaves the rod when u(x, 0) > 0 and enters it when u(x, 0) < 0. Then (3.3)
is a physically reasonable condition which may be thought of as modeling to a thin
layer of imperfect insulation separating the end of the rod from a heat reservoir at
zero temperature: heat leaks through the insulation and the simplest assumption
is that it does so at a rate proportional to the temperature difference between the
end of the rod and the reservoir. This is consistent with Newton’s law of cooling,
although that is usually used to model convective cooling, or with Fourier’s law of

heat conduction, if the insulation is so thin that one may assume that its thermal state
reacts instantaneously to changes in u(0, t). If η > 0 then heat is entering the rod
when u(x, 0) > 0 and leaving when u(x, 0) < 0; this is physically an artificial system
but is useful for mathematical exposition.

Similar considerations apply at the right end of the rod, but with the mixed boundary
condition q(0, t) = ηu(x, t) it is now η > 0 which is physically realistic.

The boundary value problem (3.1) is called homogeneous because the PDE and BC
contain only terms proportional to u or its derivatives. The inhomogeneous version of the
problem is more general:

PDE: ut(x, t) − ǫ2uxx(x, t) = F (x, t), 0 < x < L, t > 0,

BC:
αu(0, t) + β ux(0, t) = g(t) and

γ u(L, t) + δ ux(L, t) = h(t).
t > 0 (3.4)

IC: u(x, 0) = f(x), 0 < x < L,

Here the (potentially) nonzero terms F (x, t), g(t), and h(t) are referred to as the inhomo-

geneities in the problem. (In a sense the nonzero initial condition in (3.1) also represents
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Section 3.1 Inhomogeneous problems 41

an inhomogeneity, but one does not usually use this terminology because if the initial
condition were zero then the solution would be trivial and uninteresting: u(x, t) = 0 for
all x, t.) Our method for solving (3.4) is similar to the standard method for solving inho-
mogeneous ODE’s. We first find a particular solution which solves the PDE and the BC
(or in some cases, just one of these—see Remark 3.4 below), and use this to reduce the
problem to a homogeneous one, or at least to reduce the degree of inhomogeneity in the
original problem. The simplest case occurs when the inhomogeneities are independent of
time, that is, when g and h are constant and F is constant or depends only on x; in this
case a particular solution which is also time-independent can often be found.

Rather than giving an exhaustive description of exactly how the method works in all
cases we will concentrate on describing some examples.

Example 3.1: Suppose that the PDE in (3.4) is homogeneous but that there are time-
independent inhomogeneous Dirichlet boundary conditions:

PDE: ut(x, t) − ǫ2uxx(x, t) = 0, 0 < x < L, t > 0,

BC: u(0, t) = u1, u(L, t) = u2, t > 0 (3.5)

IC: u(x, 0) = f(x), 0 < x < L,

with u1 and u2 constant. Physically, this means that the two ends of the rod are held at
the constant temperatures u1 and u2. We look for a time independent solution v(x) of the
PDE and BC, ignoring for the moment the IC. Substituting v(x) into the PDE gives

vt − ǫ2vxx = 0, i.e., v′′ = 0, so v(x) = A + Bx, A, B constant.

Thus v(x) = A + Bx satisfies the PDE. It will satisfy the boundary conditions if

v(0) = A = u1 and v(L) = A + LB = u2;

these equations are easily solved to yield

v(x) = u1 + (u2 − u1)
x

L
. (3.6)

Now we write our original unknown u(x, t) as a sum of the particular solution plus another
function w(x, t):

u(x, t) = v(x) + w(x, t).

The function w(x, t) is our new unknown; it will be the solution of a problem similar to
(3.4). Since both u(x, t) and v(x) satisfy the PDE (3.5), w(x, t) = u(x, t) − v(x) will also:

wt − ǫ2wxx = (u − v)t − ǫ2(u − v)xx = (ut − ǫ2uxx) − (wt − ǫ2wxx) = 0 − 0 = 0. (3.7)

Since u(x, t) and v(x) satisfy the same inhomogeneous Dirichlet BC (3.5), w(x, t) will
satisfy the homogeneous Dirichlet BC

w(0, t) = u(0, t) − v(0) = u1 − u1 = 0, w(L, t) = u(L, t) − v(0) = u2 − u2 = 0. (3.8)
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42 Chapter 3. Partial Differential Equations

Finally, w(x, t) will satisfy the initial condition

w(x, 0) = u(x, 0)− v(x) = f(x) − v(x). (3.9)

In summary, w(x, t) solves a problem with homogeneous PDE and BC and a new IC:

PDE: wt(x, t) − ǫ2wxx(x, t) = 0, 0 < x < L, t > 0,

BC: w(0, t) = 0 and w(L, t) = 0 t > 0 (3.10)

IC: u(x, 0) = f(x) − v(x), 0 < x < L.

But we know how to solve (3.10) with a half range sine series (see Section 2.2):

w(x, t) =

∞
∑

n=1

bn sin
nπx

L
e−(ǫnπ/L)2t (3.11)

with

bn =
2

L

∫ L

0

(

f(x) − v(x)
)

sin
nπx

L
dx. (3.12)

Putting together (3.6) and (3.11) have the solution to (3.5):

u(x, t) = v(x) + w(x, t) = u1 + (u2 − u1)
x

L
+

∞
∑

n=1

bn sin
nπx

L
e−(ǫnπ/L)2t. (3.13)

Note that the coefficients bn are calculated in (3.12) from the new initial condition (3.9).

Remark 3.2: The steady state. One important question for the solution of the PDE
is the long-time behavior and in particular whether or not the temperature reaches some
steady state as t → ∞. For the solution u(x, t) found in (3.13) above the answer is yes;

the exponentials e−(ǫnπ/L)2t all vanish as t → ∞ and so

u(x, t) −→ v(x) = u1 + (u2 − u1)
x

L
as t → ∞.

This the steady state solution in this case is just the particular solution that we used
during the solution process. The notions of steady state solution and particular solution
are closely related; when the particular solution used is time independent it will in fact
always be a steady state solution, but in general it may not be the one relevant for our
problem—that is, the t → ∞ limit of u(x, t). See Remark 3.3 below.

Example 3.2: Now we consider the same problem as in Example 3.1 but with other and
more general boundary conditions. We will discuss primarily the problem of finding the
particular solution; once that is done, the completion of the solution goes as in Example
3.1.
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Section 3.1 Inhomogeneous problems 43

Consider then the problem

PDE: ut(x, t) − ǫ2uxx(x, t) = 0, 0 < x < L, t > 0,

BC:
α u(0, t) + β ux(0, t) = g and

γ u(L, t) + δ ux(L, t) = h,
t > 0 (3.14)

IC: u(x, 0) = f(x), 0 < x < L,

with g and h constant. As in Example 3.1 we look for a time independent solution v(x) of
the PDE and BC, and again this will have the form v(x) = A + Bx, where A and B must
be chosen to satisfy the BC. We considered in Example 3.1 the case of Dirichlet boundary
conditions at each end of the rod, obtained when β = δ = 0; we will abbreviate this as
Dirichlet/Dirichlet BC. Other simple cases may be discussed similarly:

Dirichlet/Neumann BC (β = γ = 0): Let us write the BC in the form

u(0, t) = u1, ux(L, t) = Q2. (3.15)

(The use of the letter Q here is meant to suggest a heat flux, although in fact we know
from (3.2) the the heat flow at the end of the rod is q(L, t) = −kAQ2.) Applying the BC
(3.15) to the solution v(x) = A + Bx leads to v(0) = A = u1, v′(L) = B = Q2, and thus
to the particular solution

v(x) = u1 + Q2x.

Using this we can reduce (3.14) to a homogeneous problem with Dirichlet/Neumann BC,
which we solve with a QRS series.

Neumann/Dirichlet BC (α = δ = 0): Now the BC are

ux(0, t) = Q1, u(L, t) = u2. (3.16)

Everything proceeds as before; the particular solution is

v(x) = u2 + Q1(L − x)x,

and the resulting a homogeneous problem is solved with a QRC series.

Neumann/Neumann BC (α = γ = 0): This case is somewhat different from the
preceding ones. The BC are

ux(0, t) = Q1, ux(L, t) = Q2. (3.17)

The particular solution v(X) = A + Bx must then satisfy

v′(0) = B = Q1 and v′(L) = B = Q2. (3.18)

Two different cases must be considered.
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44 Chapter 3. Partial Differential Equations

Neumann/Neumann BC, Case 1: Q1 = Q2 = Q. In this case the solution of (3.18)
is B = Q; A is undetermined and we may take it to be zero for simplicity, yielding the
particular solution

v(x) = Qx.

The resulting homogeneous problem for w(x, t) = u(x, t) − v(x) is solved with an HRC
series, leading to

u(x, t) = v(x) + w(x, t) = Qx + a0 +
∞
∑

n=1

an cos
nπx

L
e−(ǫnπ/L)2t, (3.19)

with

a0 =
2

L

∫ L

0

(f(x) − Qx) dx, an =
1

L

∫ L

0

(f(x) − Qx) cos
nπx

L
dx. (3.20)

Remark 3.3: The steady state again. Note that from (3.19) we now have

u(x, t) −→ a0 + Bx as t → ∞;

the steady-state solution differs from our particular solution by the constant term a0, found
in (3.20). To understand what is going on physically here one may observe that since Q1

and Q2 are proportional to the energy fluxes at the two ends of the system, the condition
Q1 = Q2 means that no net thermal energy enters or leaves the system at any time t > 0.

Since the thermal energy at time t is proportional to
∫ L

0
u(x, t) dx, this integral must in

fact be independent of time. This can be used to determine a0 without solving the full
problem; see Exercise 18.3.10(c) of Greenberg.

Neumann/Neumann BC, Case 2: Q1 6= Q2. In this case the equations (3.18) for
v(x) have no solution; there is no time-independent steady state. Physically this is
because we are imposing different heat fluxes at the two ends of the rod, so that the total
thermal energy must either increase or decrease forever. This case is explored further in
Exercise 18.3.10(c) of Greenberg, and a solution is sketched in Exercise 18.3.19.

Robin/Robin BC. We now discuss briefly the most general boundary conditions: Robin
(i.e., mixed) BC at each end of the rod. That is, we study (3.14) with no assumptions
about the coefficients α, β, γ, and δ. We still wish to use the the particular solution
v(x) = A + Bx of the PDE, for which the BC become

α v(0) + β v′(0) = αA + βB = g,

γ v(L) + δ v′(L) = γ(A + BL) + δB = h,

Rewriting these equations as

α A + β B = g,
γ A + (γ L + δ) B = h,

(3.21)

640:527 Fall 2012



Section 3.1 Inhomogeneous problems 45

we see that A and B must satisfy a linear system of two equations in two unknowns. Such
a system may or may not have a solution. If it does, we will have found our particular
solution; if not, we will have to consider other methods. The system will have a solution
for every g and h if and only if the determinant of the coefficients is nonzero, that is, if
and only if

α(γ L + δ) − β γ 6= 0. (3.22)

One checks easily that, as would be expected from the above discussions, (3.22) is satis-
fied for Dirichlet/Dirichlet, Dirichlet/Neumann, and Neumann/Dirichlet BC, but not for
Neumann/Neumann BC. When (3.22) is not satisfied we will be able to find a time inde-
pendent particular solution only for certain values of the right hand sides g and h, just as
for Neumann/Neumann BC we could find a solution only for Q1 = Q2.

Example 3.3: We finally consider an example in which the PDE, as well as the BC, is
homogeneous. For simplicity we consider homogeneous Dirichlet BC:

PDE: ut(x, t) − ǫ2uxx(x, t) = F, 0 < x < L, t > 0,

BC: u(0, t) = 0, u(L, t) = 0, t > 0 (3.23)

IC: u(x, 0) = f(x), 0 < x < L,

with F constant (the same method would work if F depended on x but not on t). Since
both the PDE and the BC are time independent we again look for a time-independent
particular solution v(x) satisfying

ODE: vt(x) − ǫ2vxx(x) = −ǫ2v′′(x) = F, 0 < x < L,

BC: v(0) = 0, v(L) = 0, (3.24)

Solving the ODE v′′ = −F/ǫ2 gives v(x) = −
Fx2

2ǫ2
+ A + Bx, and imposing the boundary

conditions implies that A = 0 and B =
FL

2ǫ2
, so that

v(x) =
FL

2ǫ2
x −

F

2ǫ2
x2

Now one writes u(x, t) = v(x) + w(x, t) and proceeds as in Example 3.1, leading to

u(x, t) = v(x) + w(x, t) =
FL

2ǫ2
x −

F

2ǫ2
x2 +

∞
∑

n=1

bn sin
nπx

L
e−(ǫnπ/L)2t. (3.25)

with

bn =
2

L

∫ L

0

(

f(x) −
FL

2ǫ2
x +

F

2ǫ2
x2

)

sin
nπx

L
dx. (3.26)

Remark 3.4: Sometimes it is convenient to find the particular solution in two or more
steps. As a rather naive example, suppose that we had assumed that, because the given BC
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46 Chapter 3. Partial Differential Equations

in Example 3.3 are inhomogeneous, we could ignore them in finding the particular solution
—that is, find a solution only of the PDE. This would have led us to the particular solution

z(x) = −
Fx2

2ǫ2
, and now writing u(x, t) = z(x) + w(x, t) (this is not the same w(x, t) as

above) we would find that w satisfied

PDE: wt(x, t) − ǫ2wxx(x, t) = 0, 0 < x < L, t > 0,

BC: w(0, t) = 0, w(L, t) =
FL2

2ǫ2
, t > 0 (3.27)

IC: w(x, 0) = f(x) − z(x), 0 < x < L,

We have thus introduced inhomogeneous boundary conditions in the new problem. But
(3.27) is just a special case of the problem treated in Example 3.1, and as in that example
could be solved by introducing a second particular solution, that is, a solution of the PDE
and BC in (3.27). The final result would have been the same. In this case our original
procedure is obviously preferable, but sometimes it is not so clear how to find a single
particular solution solving both the PDE and the BC, and the two-step process is natural.
This is what is going on in Exercise 18.3.19 of Greenberg.

640:527 Fall 2012


