Turn in starred problems, and only starred problems, Wednesday 09/19/2012.

Multiple-page homework must be STAPLED when handed in.

Section 4.3:

- 1 (a), (b), (c), *(g), *(l)
- 2
- $6(\mathrm{a}),{ }^{*}(\mathrm{e}),{ }^{*}(\mathrm{p}),{ }^{*}(\mathrm{t})$

Hints and remarks: 1. In problem 1(1) you should use the factorization $x^{4}-1=$ $(x-1)(x+1)\left(x^{2}+1\right)^{2}$. The equation has singular points at $x= \pm i$ in the complex plane, but you can ignore these; we are interested only in real singular points.
2. Problem 6(e) is very simple: it is an Euler, or Cauchy-Euler, or equidimensional, equation. I mentioned this type of equation in class on Monday $9 / 10$; you can also read about it in Section 3.6.1. You don't need to introduce a series to solve the equation; see class notes or Section 3.6.1. (However, if you are so inclined it may be instructional to do so and see what happens.)
3. For problem $6(\mathrm{p})$ you will not be able to find the general recursion relation, due to the difficulty in carrying out the multiplication of series involved in the term $e^{x} y^{\prime}$. Instead, just work with a few terms of the series, without using sigma notation. Find four non-zero terms of each of the two solutions, that is, if the solution is $y(x)=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)$ find a_{1}, a_{2}, and a_{3} in terms of a_{0}.
4. Problem $6(\mathrm{t})$ may look a bit confusing as written, but just simplify: $(x y)^{\prime \prime}=x y^{\prime \prime}+2 x y^{\prime}$.

