The Nonlinear Pendulum

The nonlinear pendulum equation is

$$\theta'' = -\frac{g}{l}\sin\theta - \gamma\theta',$$

where

- ullet θ is the angle that the pendulum makes from a downward vertical axis, measured counterclockwise;
- g is the gravitational constant,
- ullet the length of the pendulum, and
- \bullet γ is a damping constant, here measured (MKS units) in \sec^{-1} .

We take g/l=1 for simplicity and set $x=\theta$, $y=\theta'$, so we are studying the nonlinear system

$$x' = y \qquad y' = \sin x - \gamma y.$$

Since $x = \theta$ is an angle, two points in the phase plane of the form (x,y) and $(x+2n\pi,y)$ represent the same physical point.

Here are the equations again:

$$x' = y \qquad y' = \sin x - \gamma y.$$

The system has critical points at $x = n\pi$, y = 0, where

- \bullet If n is even then the pendulum is motionless, hanging down;
- If n is odd then the pendulum is motionless, balanced straight up;

The critical points for odd n are always saddle points. The critical points for even n can be centers (undamped case, $\gamma=0$), stable spirals (underdamped case) or stable nodes (overdamped case). We draw the phase plane in these three cases, taking $\gamma=0$, $\gamma=0.2$, and $\gamma=2.1$, repectively.

