The Van der Pol oscillator

The Van der Pol oscillator is governed by the second order equation

$$x'' - \epsilon(1 - x^2)x' + x = 0.$$

To convert this to a system of first order equations in two unknowns we let $y=x^\prime$ and find

$$x' = y,$$
 $y' = -x + \epsilon(1 = x^2)y.$

What follows are phase plane plots of this system for

$$\epsilon = 0.1, 0.5, 1.0, 1, 5, and 5.0.$$

Poblem 6 of Section 7.5 in Greenberg has an interesting analysis of this sytem for large ϵ .

Van der Pol oscillator: $\varepsilon = 0.1$

Van der Pol oscillator: $\varepsilon = 0.5$

Van der Pol oscillator: $\varepsilon = 1.0$

Van der Pol oscillator: $\varepsilon = 1.5$

Van der Pol oscillator: $\varepsilon = 5$

