Solutions for 640:501, Real Analysis

42. If μ_1, \ldots, μ_n are measures and a_0, \ldots, a_n are non-negative constants, it is easy to check that $\sum_{i=1}^{n} a_i \mu_i$ is a measure, because countable additivity is easy to check for the sum.

If $\{E_i\}$ are sets of \mathcal{M} of the measurable space (X, \mathcal{M}, μ), then for each n, the monotonicity of μ implies that $\mu(\bigcap_{i=n}^{\infty} E_i) \leq \mu(E_j)$ for every $j \geq n$. Hence, $\mu(\bigcap_{i=n}^{\infty} E_i) \leq \mu(E_j) \leq \inf_{i \geq n} \mu(E_i)$.

The sequence of sets $\bigcap_{i=n}^{\infty} E_i$, $n \geq 1$ increases up to $\liminf E_j$. Hence by continuity from below of measures,

$$\mu(\liminf E_j) = \lim_{n \to \infty} \mu(\bigcap_{i=n}^{\infty} E_i) \leq \lim_{n \to \infty} \inf_{i \geq n} \mu(E_i) = \liminf \mu(E_j).$$

A similar proof, but using continuity from above, works to show the corresponding fact concerning limsup, under the added assumption that $\mu(\bigcup E_i) < \infty$.

Finally, we prove $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$. This follows from finite additivity of μ;

$$\mu(E) + \mu(F) = \mu(E \cap F) + \mu(E \cap F^c) + \mu(F) = \mu(E \cap F) + \mu(E \cup F).$$

42. We know that a measure is continuous from below. Conversely, suppose μ is a finitely additive measure on the σ-algebra \mathcal{M} and also that μ is continuous from below. Let $\{A_n\} \subset \mathcal{M}$ be a disjoint sequence of measurable sets. Let $B_n = \bigcup_{i=1}^{n} A_i$. By finite additivity of μ, we have $\mu(B_n) = \sum_{i=1}^{n} \mu(A_i)$. Now B_n is an increasing sequence of measurable sets whose union is $\bigcup_{i=1}^{\infty} A_i$. So, using continuity from below in the last equality of the expression that follows,

$$\sum_{i=1}^{\infty} \mu(A_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(A_i) = \lim_{n \to \infty} \mu(B_n) = \mu\left(\bigcup_{i=1}^{\infty} A_i\right).$$

Therefore μ is countably additive and hence is a measure.

Suppose now that $\mu(X) < \infty$ and μ is continuous from above and finitely additive. Given a disjoint sequence $\{A_n\} \subset \mathcal{M}$ of measurable sets, we want to show that $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$. It suffice to show that

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \mu(X) - \sum_{i=1}^{\infty} \mu(A_i).$$

Now $U_n = (\bigcup_{i=1}^{n} A_i)^c$ is a decreasing sequence of sets whose intersection is $(\bigcup_{i=1}^{\infty} A_i)^c$. Also by finite additivity, $\mu(U_n) = \mu(X) - \sum_{i=1}^{n} \mu(A_i)$. By continuity from above, which applies without problem because $\mu(X) < \infty$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \lim_{n \to \infty} \mu(U_n) = \lim_{n \to \infty} \mu(X) - \sum_{i=1}^{n} \mu(A_i) = \mu(X) - \sum_{i=1}^{\infty} \mu(A_i).$$

44. (a) Let $E \subset X$. If $\mu^*(E) = \infty$ there is nothing to prove, so assume $\mu^*(E) < \infty$. By definition of outer measure, if $\epsilon > 0$, there exists a sequence $\{A_i\}$ of sets in the algebra \mathcal{A} such that $E \subset \bigcup_{i=1}^{\infty} A_i$ and $\mu^*(E) \leq \sum_{i=1}^{\infty} \mu(A_i) < \mu^*(E) + \epsilon$. Let $A = \bigcup_{i=1}^{\infty} A_i$. Then $A \in \mathcal{A}$.
By monotonicity and subadditivity of an outer measure, \(\mu^*(E) \leq \mu(A) \leq \sum_1^\infty \mu(A_i) + \epsilon \).

We did not use in this part the assumption that \(\mu_0 \) is a premeasure.

(b) Suppose \(\mu^*(E) < \infty \). For each \(n \), let \(B_n \in \mathcal{A}_\sigma \) such that \(E \subset B_n \) and \(\mu^*(B_n) < \mu^*(E) + 1/n \). Let \(B = \cap_1^\infty B_n \); it belongs to \(\mathcal{A}_{\sigma \delta} \). Then by the monotonicity of \(\mu^* \), \(\mu^*(E) \leq \mu^*(B) \leq \mu^*(E) \), so \(\mu^*(B) = \mu^*(E) \). Suppose \(E^* \) is \(\mu^* \)-measurable. Because \(\mu_0 \) is a premeasure, the sets in \((\sigma A) \) are also \(\mu^* \)-measurable; in particular, \(B \) is \(\mu^* \)-measurable. Hence, \(\mu^*(E) = \mu^*(B) = \mu^*(E) + \mu^*(B - E) \), and it follows that \(\mu^*(B - E) = 0 \).

Conversely, suppose \(B \in \mathcal{A}_{\sigma \delta} \), \(E \subset B \), \(\mu^*(E) < \infty \), and \(\mu^*(B - E) = 0 \). We know that \(B \) is \(\mu^* \)-measurable (Proposition 1.13) and that \((X, \mathcal{M}_{\mu^*}, \mu^*) \) is complete (Theorem 1.11). Hence \(E \) must be \(\mu^* \)-measurable.

(c) Suppose that \(\mu_0 \) be \(\sigma \)-finite. Then there is a disjoint, countable partition \(\{U_n\} \) of \(X \) such that \(\mu^*(U_n) = \mu_0(U_n) < \infty \) for every \(n \). Suppose that \(E \) is \(\mu^* \)-measurable. Let \(E_k = E \cap U_k \). For every pair of positive integers \(k \) and \(n \), there is a \(\tilde{B}_{n,k} \in \mathcal{A}_\sigma \) such that \(E_k \subset \tilde{B}_{n,k} \) and \(\mu^*(E_k) \leq \mu^*(\tilde{B}_{n,k}) < \mu^*(E_k) + 1/n \). Set \(B_{n,k} = \tilde{B}_{n,k} \cap U_k \). Then, again, \(B_{n,k} \in \mathcal{A}_\sigma \), \(E_k \subset B_{n,k} \) and \(\mu^*(E_k) \leq \mu^*(B_{n,k}) < \mu^*(E_k) + 1/n \). Moreover, if \(j \neq k \) all the sets in \(\{B_{n,j}; n \geq 1\} \) are disjoint from those in \(\{B_{n,j}; n \geq 1\} \). Set \(B = \bigcap_n \bigcup_k B_{n,k} \); this is in \(\mathcal{A}_{\sigma \delta} \). By the disjointness of the sets for different \(k \) and \(j \), \(B - E = \bigcup_k \left(\bigcap_n B_{n,k} \right) - E \).

Each set in this union has zero measure and so \(B - E \) has zero measure.

45. If \(E \) is \(\mu^* \)-measurable and \(\mu^*(X) = \mu_0(X) < \infty \), then, by additivity of \(\mu^* \) on \(\mu^* \)-measurable sets, \(\mu^*(E) = \mu^*(X) - \mu^*(E^c) = \mu_0(X) - \mu^*(E^c) = \mu_0(X) - \mu^*(E^c) \).

Conversely, suppose \(\mu^*(E) = \mu_0(X) - \mu^*(E^c) \). By following the construction in parts (a) and (b) of the previous exercise, we know there exists a \(B \in \mathcal{A}_{\sigma \delta} \) such that \(E \subset B \) and \(\mu^*(B) = \mu^*(E) \). Likewise, there exists a \(C \in \mathcal{A}_{\sigma \delta} \) such that \(E^c \subset C \) and \(\mu^*(C) = \mu^*(E^c) = \mu(X) - \mu^*(E) \); since \(C \) is \(\mu^* \)-measurable, \(\mu^*(C) = \mu^*(X) - \mu^*(C) = \mu^*(E) = \mu^*(B) \). But since \(B \) and \(C \) are \(\mu^* \)-measurable, \(\mu(B - C^c) = \mu(B) - \mu^*(C^c) = 0 \). It follows also that \(\mu^*(B - E) = 0 \). But then we know from the previous problem that \(E \) is \(\mu^* \)-measurable.

46. Let \(\mu \) be a \(\sigma \)-finite measure on the \(\sigma \)-algebra \(\mathcal{M} \). Let \(\mu^* \) be the outer measure induced by \(\mu \), \(\mathcal{M}^* \) the \(\mu^* \)-measurable sets and \(\hat{\mu} \) the measure \(\mu^* \) restricted to \(\mathcal{M}^* \). We want to show \(\hat{\mu} \) on \(\mathcal{M}^* \) is the completion of the measure \(\mu \) defined on \(\mathcal{M} \). The following preliminary result is helpful.

Lemma 1 Let \(X, \nu \) be a measure space, and let \(\bar{\mathcal{F}} \) be the completion of \(\mathcal{F} \) according to the definition

\[
\bar{\mathcal{F}} := \{ E \cup F; E \in \mathcal{F}, F \subset N \text{ for some } N \in \mathcal{F} \text{ such that } \nu(N) = 0 \}
\]

Then,

\[
\bar{\mathcal{F}} := \{ G - D; G \in \mathcal{F}, D \subset N \text{ for some } N \in \mathcal{F} \text{ such that } \nu(N) = 0 \}
\]

To prove this lemma consider \(E \cup F \in \bar{\mathcal{F}} \), where \(E \in \mathcal{F} \) and \(F \subset N \) for some \(N \in \mathcal{F} \) such that \(\nu(N) = 0 \). Then \(E \cup F = E \cup N - (N - (F \cup E)) \). Note that \(E \cup N \in \mathcal{F} \) and \(N - (F \cup E) \subset N \).
Conversely, consider $G - D$, where $G \in \mathcal{F}$ and there is $N \in \mathcal{F}$ with $\mu(N) = 0$ such that $D \subset N$. Then $G - D = (G - N) \cup ((N \cap G) - D)$, and $G - N \in \mathcal{F}$ and $(N \cap G) - D \subset N$. This completes the proof of the lemma.

Recall that $\overline{\mathcal{M}} := \{G \cup F; B \in \mathcal{M} \subset N \text{ for some } N \in \mathcal{M} \text{ such that } \mu(N) = 0\}$ and for such a set $G \cup F$ as in this definition, $\overline{\mu}(G \cup F) := \mu(G)$.

We wish to show that $\mathcal{M}^* = \overline{\mathcal{M}}$ and $\mu^*(E) = \overline{\mu}(E)$ for $E \in \mathcal{M}^*$. We know from problem 44 that if E is μ^*-measurable, there exists B in $\mathcal{M}_{\sigma\delta}$ such that $E \subset B$ and $\mu^*(B - E) = 0$. But since \mathcal{M} is a σ-algebra, $\mathcal{M}_{\sigma\delta} = \mathcal{M}$ and $B \in \mathcal{M}$. By the same token, since $B - E$ is μ^*-measurable, there exists $C \in \mathcal{M}$ such that $B - E \subset C$ and $\mu^*(C) = \mu(C) = 0$. Since $E = B - (B - E)$, where $B \in \mathcal{M}$, it follows from the lemma that $E \in \overline{\mathcal{M}}$. This proves that $\mathcal{M}^* \subset \overline{\mathcal{M}}$.

The converse, $\overline{\mathcal{M}} \subset \mathcal{M}^*$, is true because any set of outer measure zero is in \mathcal{M}^*. Thus if $G \in \mathcal{M} \subset \mathcal{M}^*$ and $F \subset N$, where $N \in \mathcal{M}$ and $\mu(N) = 0$, $F \in \mathcal{M}^*$ also, and hence $G \cup F \in \mathcal{M}^*$.

Finally, if $G \in \mathcal{M}$ and $F \subset N$, where $N \in \mathcal{M}$ and $\mu(N) = 0$, then we have that $\mu(G) = \mu^*(G) \leq \mu^*(G \cup F) \leq \mu^*(G) + \mu^*(F) = \mu^*(G) = \mu(G)$. Thus $\mu^*(G \cup F) = \mu(G) = \overline{\mu}(G)$.

47. By subadditivity, $\mu(\cup_1^\infty A_i) \leq \sum_1^\infty \mu(A_i) < \infty$. Therefore we can apply continuity from above: since the sequence of sets, $B_n = \cup_1^n A_i$, $n \geq 1$, is decreasing and $\mu(B_1) < \infty$,

$$\mu(\limsup A_n) = \lim_{n \to \infty} \mu(\bigcup_n A_i).$$

However $\mu(\bigcup_n A_i) \leq \sum_n \mu(A_i)$, which converges to 0 as $n \to \infty$ because $\sum_1^\infty \mu(A_i) < \infty$.

48. Note that $\overset{\circ}{\mu}_G((0,1]) = 2$. However, for every $0 < \epsilon < 1$, $\overset{\circ}{\mu}_G((\epsilon,1]) = 1 - \epsilon$. So if $\epsilon_n \downarrow 0$, where each $\epsilon_n > 0$, $\lim_{n \to \infty} \mu((\epsilon_n,1]) = 1 \neq \mu((0,1])$.

3