Problems for 640:501, Real Analysis

Hand in 31, 34, 40 on October 8.

31. Let \(f : \mathbb{R} \to \mathbb{R} \) be a function which has bounded variation on every finite interval. Show that \(f \) is Borel measurable.

32. In each case decide whether the collection of sets \(\mathcal{A} \) is a \(\sigma \)-algebra, an algebra only, or neither.

 (i) \(\mathcal{A} \) is the collection of all finite and co-finite subsets of an infinite set \(S \). (A subset \(B \) of \(S \) is co-finite if \(B^c \) is finite.)

 (ii) \(\mathcal{A} \) is the collection of all countable (i.e. finite or countably infinite) and co-countable subsets of an infinite set \(S \).

 (iii) All open and closed subsets of \(\mathbb{R} \).

33. Let \(\mathcal{A}_0 \) be a non-empty collection of subsets of \(S \). Take \(\mathcal{A}_1 \) to be the set of all finite intersections of the form \(\bigcap_1^n B_i \) where for each \(i \), either \(B_i \in \mathcal{A} \) or \(B_i^c \in \mathcal{A} \). Let \(\mathcal{A}_2 \) be the collection of all finite disjoint unions of elements of \(\mathcal{A}_\infty \). Show that \(\mathcal{A}_2 \) is the smallest algebra containing \(\mathcal{A}_0 \).

34. Folland, Chapter 1, problem 3.

35. Folland, Chapter 1, problem 4.

36. Folland, Chapter 1, problem 5.

37. Folland, Chapter 2, problem 3.

38. Folland, Chapter 2, problems 4 and 7.

40. Let \(\Omega := \{0, 1\}^\infty \) be the space of all sequences \(\omega = (\omega_1, \omega_2, \ldots) \) of 0’s and 1’s. Let \(\mathcal{F} \) be the \(\sigma \)-algebra generated by the cylinder sets of \(\Omega \); a cylinder set is a subset of the form \(\{\omega; (\omega_1, \ldots, \omega_n) \in B\} \), where \(n \) is a positive integer and \(B \) is a subset of \(\{0, 1\}^n \). Show that the set

\[
\left\{ \omega; \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \omega_i = \frac{1}{2} \right\}
\]

is in \(\mathcal{F} \). (Hint: try an approach similar to the discussion in class that \(\{x; \lim f_n(x) \text{ exists}\} \in \mathcal{F} \) if \(f_n \) are all \(\mathcal{F} \)-measurable.)

41. A nonempty collection \(\mathcal{M} \) of subsets of \(S \) is called a monotone class if

 (i) If \(A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \) and if \(A_i \in \mathcal{M} \) for each \(i \), then \(\bigcup_1^\infty A_i \in \mathcal{M} \).

 (ii) If \(A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots \) and if \(A_i \in \mathcal{M} \) for each \(i \), then \(\bigcap_1^\infty A_i \in \mathcal{M} \).

Prove the Monotone Class Theorem:

 Let \(\mathcal{C} \) be an algebra and suppose \(\mathcal{M} \) is a monotone class containing \(\mathcal{C} \). Then \(\sigma(\mathcal{C}) \subseteq \mathcal{M} \)

 (Hint: By problem 35, it is enough to show that \(\mathcal{M} \) is an algebra.)