45. Let A and B be Lebesgue measurable subsets of \mathbb{R}. Show that $A \times B$ is a Lebesgue measurable subset of \mathbb{R}^2.

46. Let \mathcal{R} be an algebra of subsets of S. Let μ be a σ-finite measure on $(S, \sigma(\mathcal{R}))$. Show that for each $A \in \sigma(\mathcal{R})$ and $\epsilon > 0$ there is an A_ϵ in \mathcal{R} with $\mu(A \Delta A_\epsilon) < \epsilon$.

47. (From Folland) Let \hat{m} be a finitely additive measure on (S, \mathcal{R}), where \mathcal{R} is an algebra. Assume $\hat{m}(S) < \infty$ and \hat{m} is continuous from below. Let μ^* be the outer measure induced by \hat{m}. Define the inner measure of a set by $\mu_s(A) = \mu^*(S) - \mu^*(A^c)$. Show that A is μ^*-measurable if and only if $\mu^*(A) = \mu_s(A)$. See problem 44 for help.

48. Prove Theorem 3 in the Lecture Notes, Construction of Measures.

49. Let
$$F(x) = \begin{cases} 1, & \text{if } x \geq 0; \\ 0, & \text{if } x < 0. \end{cases}$$

Let m_F^* be the outer measure induced by F—see Lecture Notes, Lebesgue-Stieltjes Measures. Determine the class m_F^* measurable sets and describe m_F^*.

50. Describe m_F and the collection of m_F^*-measurable sets in the following examples.

 (a) $F(x) = \begin{cases} x, & \text{if } x < 0; \\ 1 + x, & \text{if } x \geq 0. \end{cases}$

 (b) $F(x) = \begin{cases} 0, & \text{if } x < 0; \\ x, & \text{if } 0 \leq x < 2; \\ 2, & \text{if } x \geq 2; \end{cases}$

51. (Folland) (a) Suppose A is a Lebesgue measurable subset of \mathbb{R} with positive Lebesgue measure. For any α such that $0 < \alpha < 1$, there is an open interval I with $m(A \cap I) > \alpha m(I)$.

 (b) Let A be a Lebesgue measurable set with positive Lebesgue measure. Then $A - A$, which is defined to be the set $\{x - y ; x \in A, y \in A\}$, contains an open interval. (Hint: If the interval I is as in part (a), show that $(-m(I)/2, m(I)/2)$ is contained in $A - A$.)

52. Let S be a metric space with metric d. An outer measure ν on S is called a metric outer measure if
$$\nu(A \cup B) = \nu(A) + \nu(B) \quad \text{whenever dist}(A, B) > 0.$$

(Here $\text{dist}(A, B) \triangleq \inf\{d(x, y) ; x \in A, y \in B\}$.)
Show that if \(F \) is right-continuous and increasing on \(\mathbb{R} \), the outer measure \(m_F^* \) induced by \(F \) is a metric outer measure.

54. (Follow up to 53). This problem gives an alternative approach to proving that the Borel sets are \(m_F^* \)-measurable. The object is to prove:

Theorem 1 If \(\nu \) is a metric outer measure on a metric space \(S \), then the Borel sets of \(S \) are \(\nu \)-measurable. Conversely, if the Borel sets are \(\nu \)-measurable, then \(\nu \) is a metric outer measure.

Fill in the details of the following proof.

(a) Prove that if the Borel sets are \(\nu \)-measurable, then \(\nu \) is a metric outer measure. Hint: If \(\text{dist}(A,B) > 0 \), then \(\bar{A} \cap B = \emptyset \), where \(\bar{A} \) is closed. Use the \(\nu \)-measurability of \(\bar{A} \) to break up \(\nu(A \cup B) \) into two parts.

Now assume that \(\nu \) is a metric outer measure. To prove that the Borel sets are \(\nu \)-measurable, it is enough to prove that the closed sets are Borel measurable. Thus let \(A \) be any closed set. It is necessary to show that

\[
\nu(E) \geq \nu(E \cap A) + \nu(E \cap A^c) \quad \text{for every} \ E \subseteq S.
\]

(Since the opposite inequality is automatically true by subadditivity of \(\nu \), one can then conclude equality holds.)

If \(\nu(E) = \infty \), then (1) is true trivially. Hence, assume \(\nu(E) < \infty \). Let \(G_0 = \{ x; \text{dist}(x, A) > 1 \} \cap E \). For \(n \geq 1 \), define

\[
G_n = \left\{ x; \frac{1}{n+1} < \text{dist}(x, A) \leq \frac{1}{n} \right\} \cap E.
\]

(b) Use the metric outer measure property to prove

\[
\sum_{k=0}^{\infty} \nu(G_{2k}) \leq \nu(E) < \infty, \quad \sum_{k=0}^{\infty} \nu(G_{2k+1}) \leq \nu(E) < \infty.
\]

(c) Use (b) and subadditivity to prove

\[
\lim_{n \to \infty} \nu \left(E \cap \left\{ x; \text{dist}(x, A) > \frac{1}{n} \right\} \right) = 0.
\]

Hint: \(E \cap A^c = \left\{ x; \text{dist}(x, A) > \frac{1}{n} \right\} \cup \bigcup_{m=n}^{\infty} G_m \).

(d) For any \(n \), \(E \cap A \) and \(E \cap \left\{ x; \text{dist}(x, A) > \frac{1}{n} \right\} \) are a positive distance apart and their union is contained in \(E \). Complete the proof of (1).