
Financial Mathematics, 640:495: Binomial Trees and
Black-Scholes.

1. Purpose.

The purpose of this lecture is to show that the Black-Scholes model may
be approximated to arbitrary accuracy by a binomial tree model. There are
two reasons to do this. The first is the theoretical one of seeing that there
is intellectual coherency between the discrete and continuous time market
models and pricing formulae derived so far. We expect the real world to
really follow a discrete time model, albeit one with time steps at very close
intervals, and the continuous time models we propose should be idealized
limits of our discrete time models. The second reason is practical. We know
theoretically how to price an option using the Black-Scholes model. If it is a
European type option, paying the amount VT at time T ,

Vt = Ẽ [VT | Su, u ≤ t] ,

where Ẽ means taking expectation assuming that St follows a Black-Scholes
model with drift r and volatility σ, r being the risk-free interest rate. We saw
in the particular case of a call option that we could calculate this conditional
expectation explicitly to obtain Vt as a function of St. However consider
a complicated exotic option, whose payoff depends on the whole path, for
example a double barrier knockout that knocks out if the price ever dips below
a level K1 or goes above a level K2, but otherwise pays (ST −X)+. Deriving
an explicit pricing formula may be very difficult or impossible (actually, I
think it can be done in this case but it isn’t easy.) If one has an approximate
discrete time tree model though, one can run a backward induction algorithm
on it to obtain prices. Or consider an American put. There is, as far as I
know, no explict formula for its price assuming the Black-Scholes model. But
again, one can easily price it using backward induction on an approximate
binomial tree model.

This lecture is an attempt to explain, with more details, the material in
section 5.7.2 of the Goodman/Stampfli text.

2. A math preliminary. Taylor’s formula with remainder (remember
that!) applied to Taylor polynomials of order 2, implies

ex = 1 + x+
x2

2
+R(x), where |R(x)| ≤ x3e|x|/3!. (1)
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We will use this below to estimate ex when x is small. For an example that
we use later

eµ4t+σ
√
4t = σ

√
4t+(µ+

σ2

2
)4t

+ 2µσ(4t)3/2+µ2(4t)2+R(µ
√
4t+σ

√
4t)

= σ
√
4t+(µ+

σ2

2
)4t+ R̄(4t), (2)

where R̄(4t) denotes the last three terms in the previous expression as a
function of 4t. Note from the estimate on the remainder term in (1) that

lim
4t↓0

R̄(4t)
(4t)3/2

<∞.

Mathematicians describe this by saying that R̄(4t) is of order (4t)3/2 as
4t→ 0 and by writing (2) as

eµ4t+σ
√
4t = σ

√
4t+(µ+

σ2

2
)4t+O((4t)3/2), (3)

The student should verify similarly (this is easy) that

eµ4t−σ
√
4t = −σ

√
4t+(µ+

σ2

2
)4t+O((4t)3/2), (4)

and,
eµ4t+σ

√
4t − eµ4t−σ

√
4t = 2σ

√
4t+O((4t)3/2) (5)

3. An approximate binomial tree model.
Let assume that a volatility σ and a risk-free interest rate r are given. Our

goal is to approximate the Black-Scholes pricing theory with a binomial tree
model. Recall that in this theory prices are given as discounted expectations
or condition expectations in which it is assumed that the price process {St}
follows a Black-Scholes model with drift r and volatility σ.

Before stating the approximation, note that in the general Black-Scholes
model,

St+h = Ste
(µ−σ

2

2
)h+σ(Bt+h−Bt) (6)

and the normally distributed increment σ(Bt+h−Bt) in the exponent repre-
sents a random fluctuation of variance E

[
(σ(Bt+h−Bt))

2] = σ2h. Intuitively,

this represents a random step of absolute size about σ
√
h on average.
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We will build the approximate model on a time interval [0, T ]. Choose a
postive integer n and define

4t =
T

n
.

This will be the time duration of the periods in the binomial tree price
process. The price process will thus be Sn0 , S

n
t1
, . . . , Sntn , where the successive

times are
t0 =0, t1 =4t, t2 =24t, . . . , . . . , tn=n4t=T,

partitioning [0, T ] into n equal subintervals of duration 4t each.

The model is specified as follows. The risk-free interest rate is r; σ is a
given volatility parameter, and µ′ is a given constant. In each period, an
upswing means the price changes by the multiplicative factor

g = eµ
′4t+σ

√
4t;

a downswing means it changes by the multiplicative factor

` = eµ
′4t−σ

√
4t.

That is,
Snti+1

= Stie
µ′4t+σ

√
4t or Snti+1

= Stie
µ′4t−σ

√
4t.

For motivation, Compare this to (6), but with h replaced by 4t. The fluc-
tuation about the fixed drift in the exponent in this discrete model has size
σ
√
4t to match that in (6).

Recall the risk-neutral measure for this binomial tree model. In each
period the probabilities of upswing and downswing are, respectively,

p̃n =
er4t − eµ′4t−σ

√
4t

eµ′4t+σ
√
4t − eµ′4t−σ

√
4t and q̃n = 1− p̃n (7)

Market movements in different time periods are independent.
We will argue that as n gets large, the pricing formulae generated by

this model converge to the pricing formulae of the Black-Scholes model with
volatility σ. Recall that prices for the binomial tree model are given by
expectations and conditional expectations with respect to the risk-neutral
measure defined in (7). Prices for the Black-Scholes model are given by
taking expectations assuming the price process {St} is

St = S0 exp{(r − σ2/2)t+ σBt}
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Therefore to show that the binomial tree prices approximate the Black-
Scholes prices, it is enough to show that as n gets large, the binomial tree pro-
cess {Snti} under the risk-neutral measure behaves approximately like {St}.
To argue this fully is beyond the scope of the course. But we will show that
for large n, SnT = S0e

Yn , where Yn is approximately a normal random variable
with mean (r − σ2/2)t and variance σ2T . This is what we want because the
exponent in ST = S0 exp{(r − σ2/2)T + σBT} is precisely a normal random
variable with mean (r − σ2/2)t and variance σ2T .

Let Xk denote the number of upswings in the first k periods; k − Xk is
the corresponding number of downswings. Note that since, under the risk-
neutral measure, the probability of upswing in each period is p̃n and outcomes
in different periods are independent, Xk is a binomial random variable with
mean kp̃n and variance kp̃n(1−p̃n). Also, since every upswing contributes a
factor of σ

√
4t to the exponent and every downswing a factor of −σ

√
4t,

Sntk = S0 exp{µ′k4t+Xkσ
√
4t−(k−Xk)

√
4t}

= S0 exp{µ′tk + 2σ
√
4t(Xk − k/2)}. (8)

Since we are assuming that markets move up and down independently in dif-
ferent periods, the process {Stk} is a geometric random walk (see the handout
at http://www.math.rutgers.edu/courses/495/495martingales.pdf). At
T = n4t, since 4t = T/n,

SnT = S0 exp{µ′T + 2σ
√
T/n(Xn − n/2)}. (9)

The crucial observations are these. First, the Central Limit Theorem
applied to binomial random variables implies that for large n,

Xn − np̃n√
np̃n(1−p̃n)

is approximately a N(0, 1) random variable. (10)

Second, for large n(
r − σ2

2

)
T + σ

√
T

Xn − np̃n√
np̃n(1−p̃n)

≈ µ′T + 2σ
√
T/n(Xn − n/2) (11)

(10) and (11) taken together show that for large n the exponent in the ex-
pression for SnT in (9) is approximately a normal random variable with mean
(r − (σ2/2))T and variance σ2T and this is what we wanted to show.
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To finish the demonstration, we need to show (11). This is a bit technical.
The idea is to estimate p̃n carefully, using the approximations developed in
item 2. From item 2 we derive, et4t = 1 + r4t + O(4t2). Also in item 2,
we computed an approximation for the denominator of p̃n as given in (7).
Putting these together,

p̃n =
1+r4t−(1−σ

√
4t+(µ′+ σ2

2
)4t) +O((4t)3/2)

2σ
√
4t+O((4t)3/2)

.

Using the tangent line approximation to 1/(1+x) at x = 0 and Taylor’s
remainder formula, 1/(1+x) = 1 +O(x) as x→ 0, so

1

2σ
√
4t+O((4t)3/2)

=
1

2σ
√
4t

1

1+O(4t)
=

1

2σ
√
4t

(1+O(4t)) .

Substituting this into the expression for p̃n and cancelling terms gives

p̃n =
1

2
+
√
4t

r− σ2

2
−µ′

2σ
+O(4t).

From now on we will drop all terms of order 4t and write approximations:

p̃n ≈
1

2
+
√
4t

r− σ2

2
−µ′

2σ

p̃n(1−p̃n) ≈ 1

4
−4t

(
r− σ2

2
−µ′

2σ

)2

≈ 1

4

Hence, using 4t = T/n,

2σ
√
T

Xn − np̃n√
np̃n(1−p̃n)

≈ 2σ
√
T/n

(
Xn − n

(
1

2
+
√
4t

r− σ2

2
−µ′

2σ

))

= 2σ
√
T/n(Xn − n/2) + 2n

√
T/n

√
T/n

(
r−σ

2

2
−µ′

)
= 2σ

√
T/n(Xn − n/2)−

(
r−σ

2

2

)
T+µ′T

Adding (r − σ2/2)T to both sides of the last equation gives (11).

4. Using the binomial tree approximation. You will notice that in the
end the parameter µ′ in the binomial tree model has no bearing on the limit-
ing distribution of Snt , which is that of the Black-Scholes model and depends
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only on r and σ. Hence we can choose µ′ at our convenience. One choice
discussed in the text is to take µ′ = 0. In this case, the binomial approxima-
tion is defined by the parameters n, the factors gn = eσ

√
4t, and ` = e−

√
4t,

with 4t = T/n. The risk-neutral probability p̃n, is then, according to the
approximation worked out above,

p̃n =
er4t − e−

√
4t

e−
√
4t − e−

√
4t ≈

1

2
+
√
4t

r − σ2

2

2σ
.

This is the scaling suggested in 5.7.3 of the text for approximating the Black-
Scholes model by a binomial tree.
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