
Financial Mathematics, 640:495: Brownian motion and
Samuelson’s asset price model.

1. Modeling in continuous time and with a continuous state space.
The time parameter in the binomial tree market models is discrete; trad-

ing is assumed to occur only at a fixed sequence of times t= 0, τ , 2τ , · · ·,
T = Nτ , where T is the final trading time and the expiration date of any
derivative that we are analyzing. In these models it is also assumed that
the state space, by which we mean the range of possible market outcomes or
prices, is discrete. Thus, it has been necessary only to model a finite sequence
of prices, S0, S1, . . . , Sn, where Si denotes the price at the end of the ith pe-
riod, and this we did by specifying only three parameters, the initial price
S0, the factor, g, by which the price changes in upswings, and the factor, `,
by which it changes in downswings.

It is clearly more realistic to have models in which the time parameter
can vary continuously from the starting time zero to the expiration date T ,
because trading on an asset can occur at any time during the day, and asset
prices in a market, especially for heavily traded stocks, do fluctuate contin-
uously. Moreover, although prices trade in increments of cents or higher,
they have a potentially large range of closely spaced values, and it would
make sense to allow prices to have any positive value. In the next part of the
course, we will move to models in which St is defined for all t in the interval
[0, T ], St can take any of a continuous range of values. The object is to price
derivatives once the asset price model is specified.

The reference models for asset prices in continuous time will be random
process models. That is, the underlying asset price will be a random process
{St; 0 ≤ t ≤ T}, in which the time index t varies continuously in [0, T ].
Formally, a random process {Xt; 0 ≤ t ≤ T}, is just a collection of random
variables indexed by t. So, at every time t, the price St will be a random
variable. But it will also be important conceptually to think of the price
process in the following way, analogous to how we worked with binomial tree
models. We let Ω denote the set of all market histories over the interval
[0, T ] and for each market history ω, we let {St(ω); t ∈ [0, T ]} denote the
price path determined by ω. If we imagine that ω is random, we can think
of the function of t given by {St(·); t ∈ [0, T ]} as a random path. Notice that
we have not given in this discussion an explicit mathematical representation
of ω. (This could be done, but it would take us too far afield.) We will
generally write St without the ω dependence. You should understand in the
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continuous-time context that St is always a random variable for fixed t and
that {St; t ∈ [0, T ]} may be viewed as a random path.

How does one come up with continuous-time random processes models,
whatever the field of application? One standard method, the one we shall in
fact use, derives them as limits of discrete time models as the time increment
between steps goes to zero.

2. Brownian motion. Physical Brownian motion is the fast and erratic
movement, due to random molecular bombardment, of microscopic particles
suspended in a fluid. It is named after the botanist Robert Brown who un-
dertook the first careful experimental study of this phemomena in the 1820’s.
In 1905, Einstein derived the statistical properities of Brownian motion from
idealized assumptions. Earlier, in 1900, Bachelier realized a similar theory
in a model of stock market prices. The fully rigorous mathematical theory
of Brownian motion was initiated by Norbert Wiener in the 1930’s; for this
reason the term Wiener process is sometimes used for Brownian motion. We
shall use “Brownian motion” to refer to the idealized mathematical model of
physical Brownian motion.

We shall first give the formal definition and then try to explain and mo-
tivate it.

Definition. A random process {Bt; t ≥ 0} is called a standard Brownian
motion if B0 = 0 with probability 1 and:

(i) the (random) paths of {Bt; t ≥ 0} are continuous in t;

(ii) (independent increments property) for each 0 ≤ s < t, Bt − Bs is
independent of {Bu, u ≤ s}, the history of B up to time s;

(iii) (the stationary increments property) for each u ≥ 0, v ≥ 0, and h > 0,
the probability distribution of Bv+h−Bv is the same as the probability
distribution of Bu+h −Bu.

(iv) For any t ≥ 0, Bt ∼ N(0, t).

Remarks on the definition. 1. For 0 ≤ s < t, the difference Bt−Bs, which
is the amount B changes by between times s and t, is called the increment
of B on [s, t]. Thus, condition (ii) says that the increment of B on [s, t] is
independent of anything that has happened before time s; condition (iii) says
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that the probability distribution of the increment Bu+h−Bu of B on [u, u+h]
depends only on the length of the interval h and not on the time u when the
interval begins. Assumption (iii) implies in particular that the mean of Bt is
zero for every t. If B were to represents one’s fortune in a game of chance,
the game is fair in the sense that one stands neither to gain nor lose on the
average over any time interval.

2. Let 0 < s < t. By combining (iii), with v = s, v+h = t, and u = 0, it
follows that Bt−Bs has the same probability distribution as Bt−s−B0 = Bt−s
(since B0 = 0). So, using (iv), Bt−Bs ∼ N(0, t−s). By (ii), Bt−Bs and Bs

are independent. In summary, if 0 < s < t,

Bs ∼ N(0, s), Bt−Bs ∼ N(0, t−s), and Bt −Bs and Bs are independent.
(1)

Brownian motion is a continuous time analogue of random walk. Intu-
itively, it can be derived as a continuous time limit of random walks in which,
simultaneously, the time between steps and the step size go to zero. To ex-
press this mathematically, let ξ1, ξ2, . . . be independent random variables,
each having the same probability distribution with mean 0 and variance 1.
We will define a sequence of random walks {BN} that take steps more and
more frequently. The first walk in the sequence is

B1
t =

{
0, if 0 ≤ t < 1;∑k

i=1 ξi, if k ≤ t < k + 1.

Thus B1
t = ξ1 if 1 ≤ t < 2, B1

t = ξ1+ξ2 if 2 ≤ t < 3, and so on. {B1
t , t ≥ 0} is

a random walk which takes steps at integer times and the kth step has value
ξk. We can think of B1

n as representing how much an asset price changes
between time t = 0 and time t = n in a model that allows trading only
at integer times. The assumption that the steps ξi are independent means
that each new price movement is independent of the previous price history,
and this is the version of the independent increments property for discrete
time steps. The assumption that all the steps have the same probability
distribution implies that increments of B1

t on time intervals [n, n + k] are
stationary, that is, their distributions depend on k only, not on n. Finally,
the steps have zero mean so the walk will fluctuate around its starting point
at 0.

Now we want to speed up the time between steps. At the same time, we
must decrease the step size, so the walk does not fluctuate too wildly. As a
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convention, let us choose the step size so that the variance of the position at
time t = 1 is always equal to 1. To illustrate, we define {B2

t ; t ≥ 0}, which
takes steps at time intervals of length 1/2. This is:

B2
t =

{
0, if 0 ≤ t < 1/2;

1√
2

∑k
i=1 ξi, if k/2 ≤ t < (k + 1)/2.

Thus B2
t = ξ1/

√
2 if 1/2 ≤ t < 1, B2

t = (ξ1+ξ2)
√

2 if 2 ≤ t < 3, and so on.
Observe that

Var(B2
1) = Var

(
ξ1+ξ2√

2

)
=

1

2
(Var(ξ1) + Var(ξ2)) = 1,

as we want, since we are assuming that Var(ξi)=1 for all i.
Now the general case should be clear; ifN is any positive integer, {BN

t ; t ≥
0} will be the random walk that takes a new step every 1/N units of time,
with step size scaled by the factor

√
1/N :

B2
t =

{
0, if 0 ≤ t < 1/N ;

1√
N

∑k
i=1 ξi, if k/N ≤ t < (k + 1)/N .

Again, one can check,

Var(BN
1 ) = Var

(
1√
N

N∑
i=1

ξi

)
=

1

N

(
N∑
i=1

Var(ξi)

)
= 1.

And again, BN has independent and stationary increments, when restricted
to the times 0, 1/N, 2/N, . . ., since its steps are independent and identically
distributed.

Now imagine that as N → ∞, the random walks BN have some type
of limit B. This can be made precise, but doing so is beyond the scope of
these notes. But we can derive the properties this limit should have. We
start with the property of normality of increments expressed in requirement
(iv) of the definition of Brownian motion. It is a consequence of the Central
Limit Theorem. To see this, first fix a t > 0. Since the time between steps of
the process BN is 1/N , the number of steps it takes by time t is btNc, which
is defined to be the greatest integer less than or equal to tN . That is,

BN
t =

1√
N

btNc∑
i=1

ξi.
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Now, remembering that the mean of each ξi is 0 and the variance is 1, the
Central Limit Theorem implies that

1√
btNc

btNc∑
i=1

ξi converges in distribution to a N(0, 1) random variable Z,

as N →∞. Now BN
t =

√
btNc√
N

1

btNc

btNc∑
i=1

ξi, and lim
N→∞

√
btNc√
N

=
√
t. Hence

BN
t converges in distribution to

√
tZ, where Z ∼ N(0, 1). But

√
tZ ∼

N(0, t), and thus the limit Bt of BN
t as N →∞ should be a N(0, t) random

variable. This is the motivation for property (iv) in the definition of Brownian
motion.

Properties (ii) and (iii) for the limit B follow from the fact that they
are true for the approximating random walks Bn. Intuitively, the increment
Bt+h − Bt is the result of a myriad of small displacements all independent
of the history of Bu, u ≤ t. And the distribution of the total increment
Bt+h−Bt depends only on the length h of the time interval over which they
act.

3. Exercise computing correlations of Brownian motion between
different times. The problem is to compute E[BsBt] for 0 < s < t. The
idea is to write Bt = Bt − Bs + Bs and to use property (ii) of Brownian
motion which implies that Bs and Bt − Bs are independent. We will use
conditioning also. To begin

E [BsBt] = E
[
Bs(Bt −Bs) +B2

s

]
= E

[
E
[
Bs(Bt −Bs) +B2

s | Bs

]]
.

But

E
[
Bs(Bt −Bs) +B2

s | Bs

]
= BsE [(Bt −Bs)|Bs] +B2

s

= BsE [(Bt −Bs)] +B2
s

= B2
s . (2)

The second equality uses the independence of Bs and Bt−Bs, the third uses
the fact that the mean of Bt − Bs = 0. Substituting this result in (2), and
using the fact that Bs ∼ N(0, s), gives

E [BsBt] = E
[
B2
s

]
= s.
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4. Important calculation on exponential moments of a Brownian
motion. This calculation further illustrates how to work with Brownian
motion. We shall be calculating conditional expectations of the form

E [X | Bu, u ≤ s] . (3)

The conditioning here is with respect to the entire history of the Brown-
ian motion up to time s. Heretofore, we have conditioned only on a fi-
nite number of random variable, as in a conditional expectation of the form
E [X | Y1, . . . , Yn]. We shall not try to define the expectation in (3) rigor-
ously, but will rely on its natural interpretation. The rules we use to handle
it will be similar to the rules we used to take expectations conditional on
Y1, . . . , Yn.

Our object for this exercise is to find, for s < t,

E
[
eσBt | Bu, u ≤ s

]
. (4)

The technique will be similar to that used in item 3 above. We will take
advantage of the independent increment property and the normality of dis-
tributions.

To do this, write Bt = Bt−Bs+Bs and hence eσBt = eσBseσ(Bt−Bs). Now,
if {Bu, u ≤ s} is known, eσBs is certainly known. Moreover by property (ii)
and (1), Bt − Bs is independent of {Bu, u ≤ s} and is a N(0, t− s) random
variable. Finally, we know that if Y ∼ N(0, γ2), then E[eλY ] = eλ

2γ2/2.
Hence E

[
eσ(Bt−Bs)

]
= e(σ2/2)(t−s). Putting all this together:

E
[
eσBt | Bu, u ≤ s

]
= E

[
eσBseσ(Bt−Bs) | Bu, u ≤ s

]
= eσBsE

[
eσ(Bt−Bs) | Bu, u ≤ s

]
= eσBsE

[
eσ(Bt−Bs)

]
= eσBse(σ2/2)(t−s). (5)

The second equality follows because Bs is known given {Bu, u ≤ s}, the third
equality uses the independent increment property, and the final equality was
derived already above.

5. The quadratic variation of Brownian motion.
Let Xt = σBt, t ≥ 0 where B is a standard Brownian motion. Suppose

we do not know σ but we can observe Xu over a time interval 0 ≤ u ≤ t. We
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will show that it is possible to determine σ from this observation. In doing
so we shall introduce a central concept in the study of Brownian motion,
the quadratic variation. We shall just state facts here, and dispense with
many proofs.

Fix t and let t0 < t1 < t2 < · · · < tn = t be a partition of [0, t] into n
equal subintervals of size t/n. Let δi(X) = Xti−Xti−1

= σ(Bti−Bti−1
) =

σi(B) denote the increment of X on subinterval i of the partition. The
quadratic variation of X over the partition of [0, t] into n subintervals is
defined to be

Qn
t =

n∑
i=1

(δi(X))2 =
n∑
i=1

(
Xti −Xti−1

)2
. (6)

We will study this sum as n → ∞. To understand the sum, observe
that for each i, δi(X) ∼ N(0, σ2ti− ti−1) = N(0, σ2t/n); this is a simple
consequence of property (iv) of Brownian motion and the fact ti− ti−1 =
t/n. Moreover, by the independent increment property of Brownian motion,
δ1(X), . . . , δn(X) are independent random variables. As a result, because δi
has zero mean,

E
[
(δi(X))2

]
= Var(δi(X)) =

σ2t

n
.

and

E [Qn
t ] = E

[
n∑
i=1

(δi(X))2

]
] =

n∑
i=1

σ2t

n
= σ2t. (7)

Think of δ1(X), . . . , δn(X) as n independent observations, in each of which
we have an opportunity to learn something about σ2. It turns out that as
n→∞ we get enough information to learn σ2 exactly, because Qn

t converges
to σ2t as n → ∞. The next statement makes this precise in two different
senses of convergence.

Theorem 1

(a) E
[
(Qn

t − σ2t)
]
→ 0 as n→∞.

(b) lim
n→∞

Q2n

t = σ2t with probability 1.

The theorem can be extended. Suppose now that Xs = νs+ σBs, s ≥ 0,
is a Brownian motion with drift ν and variance coefficient σ2. Define Qn

t in
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exactly the same way. It is still true that δ1(X), . . . , δn(X) are independent,
but now

E [Qn
t ] = E

[
n∑
i=1

(δi(X))2

]
= σ2t+

µ2t2

n
. (8)

(This is left as an exercise.) As n→∞, the term involving µ disappears and
one again recaptures σ2.

Theorem 2 Theorem 1 remains true for Xs = µs+Bs, s ≥ 0.

Important remark. Suppose Xs = νs + σBs, s ≥ 0. It can be shown
that

lim
t→∞

Xt

t
= ν with probability 1.

This is a large number law generalizing the fact that the average number of
heads in n coin flips will tend to the probability of heads as n→∞. However,
it is not possible to determine ν with certainty from the observation of Xu

on a finite interval 0 ≤ u ≤ t.

5. Martingales with respect to Brownian motion.
As short hand for the history {Bu, u ≤ s} of a Brownian motion up to

time s we shall write Fs. Thus

E [X | Fs] means the same as E [X | Bu, u ≤ s] .

Definition. A random process {Xt, t ≥ 0} is a martingale relative to {Ft}t≥0

if:

(a) E[|Xt|] <∞ for all t ≥ 0;

(b) The value of Xt is known if {Bu, u ≤ t} is known.

(c) The martingale condition: for any 0 ≤ s < t,

E [Xt | Fs] = Xs (9)

Examples. 1. Brownian motion is itself a martingale, because using indepen-
dence of increments and the fact that Bs is certainly known if {Bu, u ≤ s}
is

E [Bt | Fs] = E [(Bt −Bs) +Bs|Fs] = Bs +B [Bt −Bs] = Bs.
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2. If B is a standard Brownian motion, then Xt = eσBt−σ
2t/2 is a martingale.

This is an immediate consequence of equality (5) worked out above, for if we
multiply this equality by e−σ

2t/2 we get

E
[
eσBt−σ

2t/2 | Fs
]

=σBs−σ2s/2 . (10)

3. Xt = B2
t − t is a martingale. This is an exercise.

Some final remarks on amazing (but true!) facts about Brownian
motion.

1. We stated the normality of the increments as part of the definition of
Brownian motion. But, a careful and sophisticated use of the Central Limit
Theorem show that in fact, property (iv) is a consequence of properties (i),
(ii), and (iii) and an assumption that B1 has mean zero and variance 1.
This is neat, because it means that normality of increments is forced by the
assumptions of independent stationary increments and path continuity.

2. Let Xt be a random process with continuous paths such that Xt is
a martingale and X2

t − t is a martingale with respect to conditioning on its
past values (see examples 1 and 3 immediately preceding this section.) Then
X must be a standard Brownian motion! This Lévy’s criterion for Brownian
motion.
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