Financial Mathematics, 640:495: Normal Random Variables and the Central Limit Theorem

1. Continuous random variables and variance. A function f defined on the real line satisfying the two conditions

$$f(x) \ge 0$$
 for all x , and $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1,$ (1)

is called a *probability density function*. If f is a probability density function and if X is a random variable such that

$$I\!\!P(X \le z) = \int_{-\infty}^{z} f(x) \, \mathrm{d}x, \quad \text{for all } z, \tag{2}$$

we say that X is a continuous random variable and that f is the probability density function of X. Given a continuous random variable X, we often denote its probability density function by f_X . It is a simple consequence of (2) that $I\!P(X = b) = 0$ for any individual b, and

$$I\!P(a < X \le b) = I\!P(a \le X \le b) = I\!P(a < X < b) = I\!P(a \le X < b) = \int_a^b f_X(x) \, \mathrm{d}x$$

Expectation for continuous random variables is calculated according to

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) \,\mathrm{d}x. \tag{3}$$

Recall that if X is a random variable with mean E[X] = m, its variance is defined by $\operatorname{Var}(X) = E[(X-m)^2]$ and it is often convenient to compute this using the identity $\operatorname{Var}(X) = E[X^2] - m^2$. We shall use often the following. Let X be a random variable with mean m and variance σ^2 . then

aX + b is a random variable with mean am + b and variance $a^2\sigma^2$. (4)

This is easy to see because E[aX + b] = aE[X] + b = am + b. and $Var(aX+b) = E[(X+b-(am+b)^2] = E[(aX-am)^2] = a^2E[(X-m)^2] = a^2\sigma^2$.

If X and Y are *independent* random variables with means m_X and m_Y respectively, then $E[(X - m_X)(Y - m_Y)] = E[X - m_X]E[Y - m_Y] = 0$. This fact is used to show that if X_1, \ldots, X_n are independent, then

$$\operatorname{Var}\left(\sum_{1}^{n} X_{i}\right) = \sum_{1}^{n} \operatorname{Var}(X_{i}).$$
(5)

2. Normal random variables. A random variable X is said to have a nomal distribution with mean m and variance σ^2 if

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-m)^2/(2\sigma^2)}.$$
 (6)

We write this short hand as $X \sim N(m, \sigma^2)$.

If $X \sim N(0, 1)$, then X is said to be a standard normal random variable. The probability distribution function of the standard normal distribution function will appear in the Black-Scholes formula and it is denoted,

$$N(x) = \int_{-\infty}^{x} e^{-y^{2}/2} \frac{\mathrm{d}y}{\sqrt{2\pi}}, \qquad -\infty < x < \infty.$$
 (7)

Note that the $\sqrt{2\pi}$ term appears in these formulas because of the identity,

$$\int_{-\infty}^{\infty} e^{-y^2/2} \frac{\mathrm{d}y}{\sqrt{2\pi}} = 1 \tag{8}$$

One may check that if $X \sim N(m, \sigma^2)$, then indeed E[X] = m and $Var(X) = \sigma^2$.

The following is a basic and useful fact:

if
$$X \sim N(m, \sigma^2)$$
, then $aX + b \sim N(am + b, a^2 \sigma^2)$. (9)

We know from (4) that the mean of X is am+b and its variance is $a^2\sigma^2$, so the interesting part of this statement is that aX+b is normal if X is normal. To show that (9) is true one needs to show that $X \sim N(m, \sigma^2)$ implies,

$$I\!P(aX+b \le z) = \int_{-\infty}^{z} e^{-(x-(am+b))^2/2(a^2\sigma^2)} \frac{\mathrm{d}x}{\sqrt{2\pi a^2\sigma^2}}.$$

This is left to the student.

A particular case of (9) is: if $X \sim N(m, \sigma^2)$, then $(X - m)/\sigma \sim N(0, 1)$. This has many applications. As a first application, one can compute probabilities for any normal random variable using tables for the standard normal distribution N.

Example. Let $X \sim N(2,9)$. Find $\mathbb{I}(-2 < X < 4)$. From what wwe have said, (X-2)/3 is standard normal. Thus,

$$I\!\!P(-2 < X < 4) = I\!\!P\left(\frac{-2-2}{3} < \frac{X-2}{3} < \frac{4-2}{3}\right)$$
$$= I\!\!P\left(-4/3 < (X-2)/3 < 2/3\right) = N(2/3) - N(-4/3).$$

The standard normal density function is symmetric about zero and so N(-4/3) = 1 - N(4/3). Thus, the answer can be written as N(2/3) + N(4/3) - 1. We do this because tables often present N(x) only for x > 0.

3. An important expected value calculation for normals. We will show the following

if
$$X \sim N(m, \sigma^2)$$
, then $E[e^{\lambda X}] = e^{\lambda m + (\sigma^2 \lambda^2/2)}$. (10)

First assume that $Y \sim N(0, 1)$. Then the recipe (3) for computing expectations tells us,

$$E[e^{\lambda X}] = \int_{-\infty}^{\infty} e^{\lambda x} e^{-x^2/2} \frac{\mathrm{d}x}{\sqrt{2\pi}}$$

Completion of the square in the exponent of the integrand gives,

$$e^{\lambda x}e^{-x^2/2} = e^{\lambda x - x^2/2} = e^{\lambda^2/2}e^{-(x-\lambda)^2/2}.$$

Thus

$$E[e^{\lambda X}] = e^{\lambda^2/2} \int_{-\infty}^{\infty} e^{-(x-\lambda)^2/2} \frac{\mathrm{d}x}{\sqrt{2\pi}}.$$

However, by the change of variables $z = (x - \lambda)$, and by (8),

$$\int_{-\infty}^{\infty} e^{-(x-\lambda)^2/2} \frac{\mathrm{d}x}{\sqrt{2\pi}} = \int_{-\infty}^{\infty} e^{-z^2/2} \frac{\mathrm{d}z}{\sqrt{2\pi}} = 1.$$

So we obtain,

if
$$X \sim N(0, 1)$$
, then $E[e^{\lambda X}] = e^{\lambda^2/2}$. (11)

Now consider $X \sim N(m, \sigma^2)$. Observe that

$$\lambda X = \lambda \left(\sigma \left(\frac{X-m}{\sigma} + m\right) = \lambda \sigma \frac{X-m}{\sigma} + \lambda m\right)$$

Thus, $E\left[e^{\lambda X}\right] = e^{\lambda m} E\left[e^{\lambda \sigma (X-m)/\sigma}\right]$. But $(X-m)/\sigma$ is standard normal, so we can apply (11) to the last term with $\lambda \sigma$ in place of λ . The result is

$$E[e^{\lambda X}] = e^{\lambda m} e^{\sigma^2 \lambda^2/2},$$

which is the same as formula (10) that we wanted to show.

 \diamond

4. The Central Limit Theorem. The reason that the normal distribution is important is the Central Limit Theorem, explained in this section.

Consider a sequence of independent random variables, $\xi_1, \xi_2, \xi_3, \ldots$ all with the same distribution. Such sequences appear throughout probability and are important in statistical models as well. For example, independent, identically distributed random variables model repetitions of a random trial or successive random samples in statistics. In finance, the market movements in successive periods under the risk-neutral measure are independent and identically distributed.

The Central Limit Theorem, addresses the question of the probability distribution of $\sum_{i=1}^{n} \xi_i$, suitably rescaled and centered, as *n* increases toward infinity. Assume that the ξ_i have finite means and variances. As they are assumed all to have the same distribution, the mean and variance for each ξ_i is the same. Let $m = E[\xi_i]$ denote this common mean $m = E[\xi_i]$, and $\sigma^2 = \operatorname{Var}(\xi_i)$ this common variance. Our first objective is to transform the sum $\sum_{i=1}^{n} \xi_i$ by additive and multiplicative factors to get a random variable with mean 0 and variance 1. To do this, observe that

$$E\left[\sum_{i=1}^{n} \xi_i\right] = \sum_{i=1}^{n} E[\xi_i] = \sum_{i=1}^{n} m = nm,$$

and

$$\operatorname{Var}\left(\sum_{i=1}\xi_i\right) = \sum_{i=1}\operatorname{Var}(\xi_i) = n\sigma^2.$$

In this last equation, we used formula (5). According to (4),

$$\frac{1}{\sigma\sqrt{n}}\left(\sum_{i=1}^{n}\xi_{i}-\sum_{i=1}^{n}m\right)=\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^{n}(\xi_{i}-m) \quad \text{has variance 1.}$$

Theorem 1 The Central Limit Theorem. Assume $\xi_1, \xi_2, \xi_3, \ldots$ are independent and identically distributed with common mean m and common variance σ^2 . Then

$$\lim_{n \to \infty} I\!\!P\left(\frac{1}{\sigma\sqrt{n}} \sum_{i=1}^{\infty} (\xi_i - m) \le z\right) = N(z) \quad \text{for all } z.$$
(12)

Since N(z) is the probability that a standard normal random variable is less than or equal to z, the Central Limit Theorem says that, no matter what the distribution of the ξ_i 's is, so long as their mean is m and their variance is σ^2 , the distribution of $\frac{1}{\sigma\sqrt{n}}\sum_{i=1}(\xi_i-m)$ is approximately standard normal for n large.

Note that if $\frac{1}{\sigma\sqrt{n}}\sum_{i=1}(\xi_i-m)$ is approximately standard normal, then

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{\infty} (\xi_i - m) \quad \text{is approximately an } N(0, \sigma^2) \text{ r.v.}$$
(13)

The Central Limit Theorem can be used to approximate probabilities.

Example. Let ξ_1, ξ_2, \ldots be independent, all with distribution $I\!\!P(\xi_i = 1) = 2/3$ and $I\!\!P(\xi_i = -1) = 1/3$. Then m = 1/3 and $\sigma^2 = 8/9$. Consider $X = \sum_{1}^{60} \xi_i$. If we think of ξ_1, ξ_2, \ldots as being the successive steps of a random walk, X is the distance the random walk has moved from its starting point in 60 steps. Our problem is to compute, approximately, $I\!\!P(12 \le X \le 28)$. (This probability can be represented exactly in terms of probabilities of a binomial random variable, but the formula is long and hard to compute numerically.)

X is a discrete random variable and if we apply the Central Limit Theorem, we will be approximating it by a continuous random variable. Because if this, we will get more accurate results if we apply the so-called continuity correction. X is integer valued, so we shall work instead with IP(11.5 < X < 28.5). Here 11.5 is chosen because it is halfway between 12 and the next possible value of X less than 12, namely 11; likewise 28.5 is midway between 28 and the next possible value of X greater than 28. Observe that the events 11.5 < X < 29.5 and $12 \le X \le 28$ are the same. By the Central Limit Theorem,

$$\frac{1}{\sqrt{8/9}\sqrt{60}}(X - (1/3)60) = \frac{\sqrt{3}}{4\sqrt{10}}(X - 20)$$

should be approximately standard normal. Thus

$$I\!\!P(11.5 < X < 28.5) = I\!\!P\left(\frac{11.5 - 20}{(4/3)\sqrt{10}} < \frac{\sqrt{3}}{4\sqrt{10}}(X - 20) < \frac{18.5 - 20}{(4/3)\sqrt{10}}\right) \approx N(2.016) - N(-2.016) = 0.956.$$