Financial Mathematics, 640:495: Normal Random
Variables and the Central Limit Theorem

1. Continuous random variables and variance. A function f defined
on the real line satisfying the two conditions

f(z) >0 for all z, and /_Oo flz)dz =1, (1)

is called a probability density function. If f is a probability density function
and if X is a random variable such that

P(X <z)= /_Z f(z)dz, for all z, (2)

we say that X is a continuous random variable and that f is the probability
density funtion of X. Given a continuous random variable X, we often denote
its probability density function by fx. It is a simple consequence of (2) that
IP(X =b) =0 for any individual b, and

b
]P(a<X§b):]P(aSXSb):lP(a<X<b):P(a§X<b):/ fx(x)dx.
Expectation for continuous random variables is calculated according to

B0 = [ o)) ds ®)

[e.9]

Recall that if X is a random variable with mean E[X| = m, its variance is
defined by Var(X) = E[(X —m)?] and it is often convenient to compute this
using the identity Var(X) = E[X?] — m?2. We shall use often the following.
Let X be a random variable with mean m and variance o2. then

aX + b is a random variable with mean am + b and variance a?c?.  (4)
This is easy to see because E[aX + b] = aE[X]| 4+ b= am + b. and
Var(aX+b) = F [(X—}—b—(am—i—b)z} = E [(aX — am)?] = ®E[(X—m)?] = a’0”.

If X and Y are independent random variables with means mx and my
respectively, then E[(X —mx)(Y —my)] = E[X —mx]E[Y —my] = 0. This
fact is used to show that if Xi,..., X, are independent, then

Var (Z XZ) = Var(X;). (5)
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2. Normal random variables. A random variable X is said to have a
nomal distribution with mean m and variance o2 if

fx(z) = !

2w o?

e (@=m)?/(20%) (6)

We write this short hand as X ~ N(m,d?).

If X ~ N(0,1), then X is said to be a standard normal random variable.
The probability distribution function of the standard normal distribution
function will appear in the Black-Scholes formula and it is denoted,

* d
N(x):/ e_yQ/Q\/%, —0o0 <z < o0. (7)

Note that the /27 term appears in these formulas because of the identity,

2 Y 8

/OO V2m (®)

One may check that if X ~ N(m,o?), then indeed E[X] =m and Var(X) =
2

o2

The following is a basic and useful fact:
if X ~ N(m,o?), then aX + b~ N(am+b,a?c?). 9)

We know from (4) that the mean of X is am+b and its variance is a?c?, so
the interesting part of this statement is that a X + b is normal if X is normal.
To show that (9) is true one needs to show that X ~ N(m,0?) implies,

_ [T peamibaeeny 9T
P(aX+b<2) /Ooe Joraiol
This is left to the student.

A particular case of (9) is: if X ~ N(m,0?), then (X —m)/o ~ N(0,1).
This has many applications. As a first application, one can compute proba-
bilities for any normal random variable using tables for the standard normal
distribution .

Ezample. Let X ~ N(2,9). Find P(—2 < X < 4). From what wwe have
said, (X — 2)/3 is standard normal. Thus,

—2-2 X-2 4-2
P(-2<X<4) = P
(—2< X < 4) ( s <3 <3 )

= P(-4/3 < (X —2)/3<2/3) = N(2/3) — N(—4/3).
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The standard normal density function is symmetric about zero and so N(—4/3) =
1 — N(4/3). Thus, the answer can be written as N(2/3) + N(4/3) — 1. We
do this because tables often present N(z) only for x > 0. o

3. An important expected value calculation for normals. We will
show the following

if X ~ N(m,0?), then E[eM] = M+ /2), (10)
First assume that Y ~ N(0,1). Then the recipe (3) for computing ex-

pectations tells us,
o dx
E[eM] I/ eIt
—00

V21

Completion of the square in the exponent of the integrand gives,

_p2 2 2 ()2
6)\1 z/2:€)\:c 93/2:6)\ /26 (z—X) /2'

(&

Thus

o dx
EleMX] — e’\2/2/ 6—(1:—)\)2/2 .
[e™] N o

However, by the change of variables z = (x — \), and by (8),

/OO ez Qo[ e d2
oo V2T o 2T

So we obtain, .
if X ~ N(0,1), then FE[eM] = e/2 (11)

Now consider X ~ N(m,c?). Observe that

)\X:)\(J(X_m+m) T .

o o

Thus, E [eM]=¢e""E [eAU(X_m)/”}. But (X —m)/o is standard normal,
so we can apply (11) to the last term with Ao in place of A\. The result is

E[GAX] _ 6>\mea2)\2/27

which is the same as formula (10) that we wanted to show. o



4. The Central Limit Theorem. The reason that the normal distribution
is important is the Central Limit Theorem, explained in this section.

Consider a sequence of independent random variables, &;,&s,&s,... all
with the same distribution. Such sequences appear throughout probability
and are important in statistical models as well. For example, independent,
identically distributed random variables model repetitions of a random trial
or successive random samples in statistics. In finance, the market movements
in successive periods under the risk-neutral measure are independent and
identically distributed.

The Central Limit Theorem, addresses the question of the probability
distribution of Y7 | &, suitably rescaled and centered, as n increases toward
infinity. Assume that the & have finite means and variances. As they are
assumed all to have the same distribution, the mean and variance for each
& is the same. Let m = E[;] denote this common mean m = EI[¢], and
0? = Var(&) this common variance. Our first objective is to transform the
sum » . & by additive and multiplicative factors to get a random variable
with mean 0 and variance 1. To do this, observe that

Z@-] = ZE[&] = Zmznm,

E

and
Var (Z §i> = ZVar(&) = no’.
i=1 i=1

In this last equation, we used formula (5). According to (4),

U_\l/ﬁ (; ¢ — Zz:; m) — % ;(&—m) has variance 1.

Theorem 1 The Central Limit Theorem. Assume &;,&,&3,... are in-
dependent and identically distributed with common mean m and common
variance 0. Then

lim P (a—\l/ﬁ ;(&—m) < z) = N(z) forall z. (12)

n—oo

Since N(z) is the probability that a standard normal random variable is
less than or equal to z, the Central Limit Theorem says that, no matter what

4



the distribution of the &;’s is, so long as their mean is m and their variance
is 02, the distribution of ﬁ > =1 (&—m) is approximately standard normal
for n large.

Note that if ﬁ > i—1(&—m) is approximately standard normal, then

1
Jn Z(fi—M) is approximately an N(0,0?) r.v. (13)
i=1

The Central Limit Theorem can be used to approximate probabilities.

Ezample. Let &, &, ... be independent, all with distribution IP(§;=1) = 2/3
and P(¢=—1) = 1/3. Then m = 1/3 and o2 = 8/9. Consider X = S"%°¢,.
If we think of &1, &, ... as being the successive steps of a random walk, X
is the distance the random walk has moved from its starting point in 60
steps. Our problem is to compute, approximately, IP(12 < X < 28). (This
probability can be represented exactly in terms of probabilities of a binomial
random variable, but the formula is long and hard to compute numerically.)

X is a discrete random variable and if we apply the Central Limit The-
orem, we will be approximating it by a continuous random variable. Be-
cause if this, we will get more accurate results if we apply the so-called
continuity correction. X is integer valued, so we shall work instead with
IP(11.5 < X < 28.5). Here 11.5 is chosen because it is halfway between 12
and the next possible value of X less than 12, namely 11; likewise 28.5 is
midway between 28 and the next possible value of X greater than 28. Ob-
serve that the events 11.5 < X < 29.5 and 12 < X < 28 are the same. By
the Central Limit Theorem,

1 V3
m(X — (1/3)60) = 1= (X —20)

should be approximately standard normal. Thus

11.5 — 20 3 18.5 — 20
P(115 < X <285) = IP < V3 )

(4/3)v/10 w0 (4/3)v10
~ N(2.016) — N(—2.016) = 0.956.



