
Financial Mathematics, 640:495: Normal Random
Variables and the Central Limit Theorem

1. Continuous random variables and variance. A function f defined
on the real line satisfying the two conditions

f(x) ≥ 0 for all x, and

∫ ∞
−∞

f(x) dx = 1, (1)

is called a probability density function. If f is a probability density function
and if X is a random variable such that

IP (X ≤ z) =

∫ z

−∞
f(x) dx, for all z, (2)

we say that X is a continuous random variable and that f is the probability
density funtion of X. Given a continuous random variable X, we often denote
its probability density function by fX . It is a simple consequence of (2) that
IP (X = b) = 0 for any individual b, and

IP (a < X ≤ b) = IP (a ≤ X ≤ b) = IP (a < X < b) = IP (a ≤ X < b) =

∫ b

a

fX(x) dx.

Expectation for continuous random variables is calculated according to

E [h(X)] =

∫ ∞
−∞

h(x)fX(x) dx. (3)

Recall that if X is a random variable with mean E[X] = m, its variance is
defined by Var(X) = E[(X −m)2] and it is often convenient to compute this
using the identity Var(X) = E[X2] −m2. We shall use often the following.
Let X be a random variable with mean m and variance σ2. then

aX + b is a random variable with mean am+ b and variance a2σ2. (4)

This is easy to see because E[aX + b] = aE[X] + b = am+ b. and

Var(aX+b) = E
[
(X+b−(am+b)2] = E

[
(aX − am)2

]
= a2E[(X−m)2] = a2σ2.

If X and Y are independent random variables with means mX and mY

respectively, then E[(X−mX)(Y −mY )] = E[X−mX ]E[Y −mY ] = 0. This
fact is used to show that if X1, . . . , Xn are independent, then

Var

(
n∑
1

Xi

)
=

n∑
1

Var(Xi). (5)
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2. Normal random variables. A random variable X is said to have a
nomal distribution with mean m and variance σ2 if

fX(x) =
1√

2πσ2
e−(x−m)2/(2σ2). (6)

We write this short hand as X ∼ N(m,σ2).
If X ∼ N(0, 1), then X is said to be a standard normal random variable.

The probability distribution function of the standard normal distribution
function will appear in the Black-Scholes formula and it is denoted,

N(x) =

∫ x

−∞
e−y

2/2 dy√
2π
, −∞ < x <∞. (7)

Note that the
√

2π term appears in these formulas because of the identity,∫ ∞
−∞

e−y
2/2 dy√

2π
= 1 (8)

One may check that if X ∼ N(m,σ2), then indeed E[X] = m and Var(X) =
σ2.

The following is a basic and useful fact:

if X ∼ N(m,σ2), then aX + b ∼ N(am+b, a2σ2). (9)

We know from (4) that the mean of X is am+b and its variance is a2σ2, so
the interesting part of this statement is that aX+ b is normal if X is normal.
To show that (9) is true one needs to show that X ∼ N(m,σ2) implies,

IP (aX+b ≤ z) =

∫ z

−∞
e−(x−(am+b))2/2(a2σ2) dx√

2πa2σ2
.

This is left to the student.
A particular case of (9) is: if X ∼ N(m,σ2), then (X −m)/σ ∼ N(0, 1).

This has many applications. As a first application, one can compute proba-
bilities for any normal random variable using tables for the standard normal
distribution N .

Example. Let X ∼ N(2, 9). Find IP (−2 < X < 4). From what wwe have
said, (X − 2)/3 is standard normal. Thus,

IP (−2 < X < 4) = IP

(
−2− 2

3
<
X − 2

3
<

4− 2

3

)
= IP (−4/3 < (X − 2)/3 < 2/3) = N(2/3)−N(−4/3).
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The standard normal density function is symmetric about zero and soN(−4/3) =
1 −N(4/3). Thus, the answer can be written as N(2/3) + N(4/3) − 1. We
do this because tables often present N(x) only for x > 0. �

3. An important expected value calculation for normals. We will
show the following

if X ∼ N(m,σ2), then E[eλX ] = eλm+(σ2λ2/2). (10)

First assume that Y ∼ N(0, 1). Then the recipe (3) for computing ex-
pectations tells us,

E[eλX ] =

∫ ∞
−∞

eλxe−x
2/2 dx√

2π
.

Completion of the square in the exponent of the integrand gives,

eλxe−x
2/2 = eλx−x

2/2 = eλ
2/2e−(x−λ)2/2.

Thus

E[eλX ] = eλ
2/2

∫ ∞
−∞

e−(x−λ)2/2 dx√
2π
.

However, by the change of variables z = (x− λ), and by (8),∫ ∞
−∞

e−(x−λ)2/2 dx√
2π

=

∫ ∞
−∞

e−z
2/2 dz√

2π
= 1.

So we obtain,
if X ∼ N(0, 1), then E[eλX ] = eλ

2/2. (11)

Now consider X ∼ N(m,σ2). Observe that

λX = λ(σ

(
X −m
σ

+m

)
= λσ

X −m
σ

+ λm.

Thus, E
[
eλX
]

= eλmE
[
eλσ(X−m)/σ

]
. But (X −m)/σ is standard normal,

so we can apply (11) to the last term with λσ in place of λ. The result is

E[eλX ] = eλmeσ
2λ2/2,

which is the same as formula (10) that we wanted to show. �
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4. The Central Limit Theorem. The reason that the normal distribution
is important is the Central Limit Theorem, explained in this section.

Consider a sequence of independent random variables, ξ1, ξ2, ξ3, . . . all
with the same distribution. Such sequences appear throughout probability
and are important in statistical models as well. For example, independent,
identically distributed random variables model repetitions of a random trial
or successive random samples in statistics. In finance, the market movements
in successive periods under the risk-neutral measure are independent and
identically distributed.

The Central Limit Theorem, addresses the question of the probability
distribution of

∑n
i=1 ξi, suitably rescaled and centered, as n increases toward

infinity. Assume that the ξi have finite means and variances. As they are
assumed all to have the same distribution, the mean and variance for each
ξi is the same. Let m = E[ξi] denote this common mean m = E[ξi], and
σ2 = Var(ξi) this common variance. Our first objective is to transform the
sum

∑n
i=1 ξi by additive and multiplicative factors to get a random variable

with mean 0 and variance 1. To do this, observe that

E

[∑
i=1

ξi

]
=

n∑
i=1

E[ξi] =
n∑
i=1

m = nm,

and

Var

(∑
i=1

ξi

)
=
∑
i=1

Var(ξi) = nσ2.

In this last equation, we used formula (5). According to (4),

1

σ
√
n

(∑
i=1

ξi −
n∑
i=1

m

)
=

1

σ
√
n

∑
i=1

(ξi−m) has variance 1.

Theorem 1 The Central Limit Theorem. Assume ξ1, ξ2, ξ3, . . . are in-
dependent and identically distributed with common mean m and common
variance σ2. Then

lim
n→∞

IP

(
1

σ
√
n

∑
i=1

(ξi−m) ≤ z

)
= N(z) for all z. (12)

Since N(z) is the probability that a standard normal random variable is
less than or equal to z, the Central Limit Theorem says that, no matter what
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the distribution of the ξi’s is, so long as their mean is m and their variance
is σ2, the distribution of 1

σ
√
n

∑
i=1(ξi−m) is approximately standard normal

for n large.
Note that if 1

σ
√
n

∑
i=1(ξi−m) is approximately standard normal, then

1√
n

∑
i=1

(ξi−m) is approximately an N(0, σ2) r.v. (13)

The Central Limit Theorem can be used to approximate probabilities.

Example. Let ξ1, ξ2, . . . be independent, all with distribution IP (ξi=1) = 2/3
and IP (ξi=−1) = 1/3. Then m = 1/3 and σ2 = 8/9. Consider X =

∑60
1 ξi.

If we think of ξ1, ξ2, . . . as being the successive steps of a random walk, X
is the distance the random walk has moved from its starting point in 60
steps. Our problem is to compute, approximately, IP (12 ≤ X ≤ 28). (This
probability can be represented exactly in terms of probabilities of a binomial
random variable, but the formula is long and hard to compute numerically.)

X is a discrete random variable and if we apply the Central Limit The-
orem, we will be approximating it by a continuous random variable. Be-
cause if this, we will get more accurate results if we apply the so-called
continuity correction. X is integer valued, so we shall work instead with
IP (11.5 < X < 28.5). Here 11.5 is chosen because it is halfway between 12
and the next possible value of X less than 12, namely 11; likewise 28.5 is
midway between 28 and the next possible value of X greater than 28. Ob-
serve that the events 11.5 < X < 29.5 and 12 ≤ X ≤ 28 are the same. By
the Central Limit Theorem,

1√
8/9
√

60
(X − (1/3)60) =

√
3

4
√

10
(X − 20)

should be approximately standard normal. Thus

IP (11.5 < X < 28.5) = IP

(
11.5− 20

(4/3)
√

10
<

√
3

4
√

10
(X − 20) <

18.5− 20

(4/3)
√

10

)
≈ N(2.016)−N(−2.016) = 0.956.
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