
640:495 Mathematical Finance, Problems

Ito’s rule. In class we gave a prescription called Ito’s rule for finding d[f(Xt, t)]
if dXt = αt dt + βt dBt, where B is a standard Brownian motion. This rule had
to do with using Taylor polynomial approximations, and replacing (dBt)

2 by dt and
dropping terms with dtdBt or (dt). By applying that prescription to a general f , Itô’s
rule can be stated generally, and in problems it is generally easier to work directly
with these general statments than repeat the whole analysis each time. So we state
the formulae here:

• For f(x) a function of x only, having two continuous derivatives in x, and for
dXt = αt dt+ βt dBt:

d[f(Xt)] =
{
f ′(Xt)αt +

1

2
f ′′(Xt)β

2
t

}
dt+ f ′(Xt)βt dBt. (1)

• For f(x, t) having two continuous derivatives in x and one continuous derivative in
t and for dXt = αt dt+ βt dBt:

d[f(Xt, t)] =

{
∂f

∂t
(Xt, t) +

∂f

∂x
(Xt, t)αt +

1

2

∂2f

∂2x
(Xt, t)β

2
t

}
dt+

∂f

∂x
(Xt, t)βt dBt. (2)

The terms with second derivatives in f in the coefficients of dt in these formulae
are called the “Itô correction terms.” It is convenient to use the notations ft(x, t),
fx(x, t) and fxx(x, t) for the partial derivatives of f .

Example: Find the Itô differential d[B2
t ].

To do this apply formula (1) with f(x) = x2 and Xt = Bt. Since dXt = dBt,
αt = 0 and βt = 1, Since f ′(x) = 2x and f ′′(x) = 2,

d[B2
t ] =

1

2
f ′′(Bt) dt+ f ′(Bt)βt dBt = dt+ 2Bt dBt.

Example: Find the Itô differential of tB2
t . Here f(x, t) = tx2, so ft(x, t) = x2,

fx(x, t) = 2tx, fxx(x, t) = 2t. Hence

d[tB2
t ] = {B2

t + t} dt+ 2tBt dBt.

In this problem set Bt always stands for standard Brownian motion.

78. Apply Itô’s rule to compute (a) d[B3
t ]; (b) d[B4

t ].

79. Let Zt = eBt . Show that Z satisfies dZt = (1/2)Zt dt+ Zt dBt.
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80. Let Zt = teBt . Show that Z satisfies dZt = [(1/2)Zt + (1/t)Zt] dt+ Zt dBt.

81. Let f(x, t) = (x+t)e−x−(1/2)t. Show ft + (1/2)fxx = 0. Use Itô’s rule to show
that d[(Bt+t) exp{−Bt − (1/2)t} = (1−Bt−t) exp{−Bt − (1/2)t} dBt.

In the next few problems we will use the fact, stated in the class notes, that if
E[
∫ t

0 β
2
t dt] =

∫ t
0 E[β2

t ] dt < ∞, and if, for every s < t, Bt − Bs and {βu, u ≤ t} are
independent, then

E[
∫ t

0
βs dBs] = 0. (3)

We cannot give a full proof of this fact at the level we are developing the subject But
it is easily understood. Remember that we can think of βtdBt as βt[Bt+dt − Bt] and
can interpret this as the earnings on a bet of βt on the fluctuation dBt = Bt+dt −Bt.
As βt is independent of dBt = Bt+dt − Bt, E[βtdBt] = E[βt]E[Bt+dt − Bt] = 0. Now
the integral

∫ t
0 βt dBt is a essentially a sum of the terms βt dBt and as the expectation

of a sum is a sum of expectations, one arrives at (3). The condition E[
∫ t

0 β
2
t dt] <∞

might look mysterious as it puts a bound on the expected square of the integrand;
but it is used in the rigorous theory for making sure the integral is defined.

Here is a simple application. We know that d[B2
t ] = 2Bt dBt + dt, which means

B2
t =

∫ t
0 2Bs dBs + t. So taking expectations, E[B2

t ] = t. Of course, we know this
already, and really it is used in showing B2

t =
∫ t

0 2Bs dBs + t. But at least this double
checks (3).

Properly speaking we should always check the necessary condition E[
∫ t

0 β
2
t dt] <

∞, but in the problems you may assume this is true and use (3) as a tool to get
answers.

82. Use the result of problem 78 (b) to show that E[B4
t ] = 3t2 and Var(B2

t ) = 2t2.

83. Let St = S0 exp{(µ− σ2/2)t+ σBt}. We proved earlier that E[St] = S0e
µt. The

purpose of this problem is to rederive the result using Itô’s rule and (3). In class, we
showed dSt = µSt+σSt dBt or St−S0 =

∫ t
0 µSs ds+

∫ t
0 σSs dBs. Take expectations on

both sides and interchange expectation and the ordinary integral. Then differentiate
to obtain a differential equation for y(t) = E[St]. Show that S0e

µt is the solution.

84. Let V (ST , T ) be the payoff of a European option at time T . This could be a
call option, in which case V (ST , T ) = (ST − X)+ or a put option, in which case
V (ST , T ) = (X − ST )+. But it could be any other function of the price ST . Assume
that S follows the risk-neutral Black-Scholes model, St = rSt dt+ σSt dBt.

Show the following. If v(x, t) is a solution to

vt(s, t) + rsvs(s, t) + (σ2/2)s2vss(s, t)− rv(s, t) = 0, s > 0, 0 ≤ t < T ;

v(s, T ) = V (s, T ), s > 0,
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then
v(S0, 0) = e−rTE [V (ST , T )] .

Hint: Apply Ito’s rule to e−rtv(St, t) to derive an expression of the form e−rTV (ST , T ) =
e−rTv(ST , T ) = v(S0, 0) +

∫ T
0 βs dBs.

This problem is very important. It connects the Black-Scholes pde for option
pricing to the formula for the price as an expectation with respect to the risk-neutral
price, for general payoffs depending only the asset price at expiration.

85. (a) In this part you may use the fact, which you may assume without proof, that,
if Z ∼ N(0, σ2), then E[Z4] = 3σ4. The problem is to show that Z2 − σ2 has mean
zero and variance 2σ4.

(b) In this part, you are asked to show what you used in (a): If Z ∼ N(0, σ2),
show that E[Z4] = 3σ4.

Hint: E[Z4] =
∫ ∞
−∞

z4e−z
2/2σ2 dz√

2πσ2
. First change variables to replace z2/σ2 by

y:

E[Z4] = σ4
∫ ∞
−∞

y4e−y
2/2σ2 dz√

2π
.

Notice that y4e[ − y2/2] = −y3 d

dy
e−y

2/2 and use this to integrate by parts. Use the

same trick to integrate by parts again.

86. (a) Let B be a Brownian motion and let 0 = t0 < t1 < t2 < · · · tn = t be a
partition of [0, t] into n equal subintervals, each of length t/n. (Thus ti+1 − ti = t/n
for each i.) Consider

Yn =
n−1∑
i=0

[
Bti+1

−Bti

]2
− t =

n−1∑
i=0

([
Bti+1

−Bti

]2
− t

n

)
.

Show that E[Yn] = 0 and Var(Yn) =
∑n−1

0 2(t/n)2 = 2t2/n.
(Hint: The terms in the sum defining Yn are independent; explain why. Compute

the variance of each term using the result of problem 85 (a) or problem 82. Remem-
ber that the variance of a sum of independent random variables is the sum of the
variances.)

(b) Use the result of (a) to show

lim
t→∞

E

(n−1∑
i=0

[
Bti+1

−Bti

]2
− t

)2
 = 0.
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(Remember that we have defined the limit of
∑n−1
i=0

[
Bti+1

−Bti

]2
as the quadratic

variation of B over [0, t]. So with this problem we have proven that the quadratic
variation of a Brownian motion over [0, t] is t.)

87. Let B be a Brownian motion. Let 0 = t0 < t1 < t2 < · · · tn = t be a partition of
[0, t] into n equal subintervals. Observe that (B0 = 0

B3
t = B3

t −B3
0 =

n−1∑
i=0

[
B3
ti+1
−B3

ti

]
.

a) By writing Bti+1
= Bti+(Bti+1

−Bti), show

B3
ti+1
−B3

ti
= 3B2

ti
(Bti+1

−Bti) + 3B2
ti

(ti+1 − ti) + 3Bti

[
(Bti+1

−Bti)
2 − (ti+1 − ti)

]
.

b) From (a), and the problem statement

B3
t =

n−1∑
i=0

3B2
ti

(Bti+1
−Bti) +

n−1∑
i=0

3B2
ti

(ti+1 − ti) + Yn, (4)

where Yn =
∑n−1
i=0 3B2

ti

[
(Bti+1

−Bti)
2 − (ti+1 − ti)

]
. As n→∞ the first two terms in

(4) converge respectively to
∫ t

0 3B2
s dBs and

∫ t
0 3B2

s ds by definition of the stochastic
and Riemann integrals. In this part you are to show

E[Y 2
n ] =

n−1∑
0

6ti(t/n)2 and lim
n→∞

E[Y 2
n ]→ 0.

It will then follow that Yn → 0 in mean square and so taking limits in (4), B3
t =∫ t

0 3B2
s dBs +

∫ t
0 3B2

s ds. This proves directly what we got by Itô’s rule in problem 78
(a).

(Hint: For notational covenience, let Xi = (Bti+1
−Bti)

2− (ti+1 − ti). If you have
done the previous problem you know this has mean 0 and variance 2t/n. If not, show
this using problem 85 (a) or problem 82. Then use independence of increments in
computing E[Y 2

n ].)
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