
610)621: Mathematical Finance: Notes for Lectures 8 and 9.

I. Orientation.

So far in this course we have done the following:

1. For the one-period, binomial model we used the principles of no-arbitrage and
portfolio replication to derive a formula that gives the price of an arbitrary
derivative.

2. We expressed the one-period pricing formula as a discounted expectation of the
derivative pay-off with respect to the risk-neutral measure. The risk-neutral
measure is an assignment of probabilities to the price movements so that S0 =
e−rτ Ẽ [Sτ ]; here τ is the duration of the period, r the nominal interest rate,
S is the price of the stock, and Ẽ denotes expectation using the risk-neutral
probabilities.

3. For the multi-period, binomial tree model, we stated a backward induction (dy-
namic programming) algorithm to compute the price of any derivative expiring
after period N . The algorithm gives the price of the derivative at any period k
before N , given the market history up to period k.

Our next project is to do for the multi-period model what we did for the one-
period model—justify the backward induction pricing algorithm using the ideas of
no-arbitrage and portfolio replication, and, if possible, express derivative prices as
expectations.

II. The binomial tree model with N periods.

In words, the assumptions of he N -period, binomial tree model are

1. In each period the market either goes up (u) or down (d).

2. There is one risky asset, called the stock. If the market goes up in a period the
return over that period on the asset price is g, if it goes down the return is `,
and ` and g are the same for each period.

3. A dollar invested over one period at the risk free rate grows to erτ dollars; τ
is the duration of each period (in years) and r is the nominal, annual risk-free
rate.

4. It is assumed that ` < erτ < g. As we know, this rules out arbitrage trading
between the stock and investing at the risk-free rate.
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In lecture 1 (see class notes) we already began to discuss notation for this model
in the cases N = 1 and N = 2. Homework exercise #4 extended the notation to
N = 3. Here, general notation and an important formula for the price process will
be established.

A market history (or outcome, or path) for the N -period model is a sequence
ω = (w1, w2, . . . , wN) of length N , of u’s and d’s, wi = u signifying an upswing in
period i, Wi = d a downswing. The set of all market histories of length N is denoted
Ω, or, when we want to be clear about the number of periods, ΩN . Thus, as in the
first lecture, Ω2 = {(u, u), (u, d), (d, u), (d, d)}.

Prices and payoff functions of derivatives are all functions on the set of market
histories Ω. The price of the stock at the beginning of the period is denoted S0 and is
assumed given. For each integer t, 1 ≤ t ≤ N , and market outcome ω, St(ω) denotes
the price of the stock at the end of period t given market history ω. Note that the
assumption 2 above, implies that the price St depends only on the market history in
the first t periods. Therefore, we shall write St(ω) as

St(w1, . . . , wt),

keeping only those variables on which St truly depends. Applying this principle and
assumption 2, one calculates

S1(u) = gS0, S1(d) = `S0, S2(u, u) = g2S0, S2(u, d) = S2(d, u) = g`S0,

S2(d, d) = `2S0, S3(u, u, u) = g3S0, S3(u, u, d) = S3(u, d, u) = S3(d, u, u) = g2`S0,

and so on. Note that this notation differs from what was used in the lecture 1 notes
and in the solution to homework exercise #4: for example in the 3-period model,
we previously wrote S1(u, u, u), but now we drop the superfluous variables indicating
market movements in periods beyond period 1 and write only S1(u).

To generalize, if a function V on Ω depends only on the first t market movements
of the full history ω = (w1, . . . , wN), we shall write V (w1, . . . , wt).

Although we have not yet put probabilities on Ω, we think of the market outcomes
as random. With this is mind, it is useful to think of functions on Ω as random
variables. Here, we make an important convention that we try to stick to for clarity.
When we want to refer to the value of the function V for a specific market outcome
ω = (w1, . . . , wN) we write, of course, V (w1, . . . , wN). When we want to think about V
as a function on Ω, that is, as a random variable whose value will only be determined,
once a market history is observed, we write just V .

The sequence of prices S0, S1, S2, . . . , SN , understood in the random variable sense,
will be refered to as the price process.
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Now that you have, I hope, digested the notation, we discuss a useful formula for
the price process. For each t, define the function

Yt(w1, . . . , wt) = the number of upswings (u’s) in (w1, . . . , wt).

Of course, since (w1, . . . , wt) is a sequence of length t, t− Yt(w1, . . . , wt) is the num-
ber of downswings (d’s) in (w1, . . . , wt). Thus, for example Y5(u, u, d, u, d) = 3,
Y5(d, d, d, u, d) = 1.

Consider now St(w1, . . . , wn); every upswing changes the price of the asset by a
factor of g, every downswing by a factor of `. At time zero the price is S0; thus

St(w1, . . . , wt) = gYt(w1,...,wt)`t−Yt(w1,...,wn)S0, for all (w1, . . . , wt). (1)

Summarized more elegantly, this is an identity of funcitions:

St = gYt`t−YtS0.

An easy consequence of this identity is that the possible values of St are
{gtS0, g

t−1`S0, g
t−2`2S0, . . . , g`

t−1S0, `
tS0}.

III. Probabilities and expectations on the market model.

This section is in preparation for defining a risk-neutral measure on the multi-
period, binomial tree model. Again, simple examples of what we shall do in this
section have already been given in the lecture 1 notes and in howework problem #4
for the cases N = 2 and N = 3.

One could assign probabilities to the market outcomes in as complicated a manner
as one wishes. However, we will consider only a special class of probability assign-
ments. Fix a number p, 0 < p < 1. We will study only probability assignments
determined by the following rule.

The random walk probability model: In each period, the probability of an
upswing (u) is p and of a downswing (d) is q = 1− p. Market movements in different
periods are independent.

Let us use the notation IPp to denote probabilities calculated according to this
rule when p is the probability of upswing. For example,

IPp ((w1, . . . , wN)) denotes the probability that the market history is (w1, . . . , wN).

These probabilities were calculated in problem #4 for the three period model. Using
the assumption of independence of different periods,

IPp ((u, u, u)) = p3, IPp ((u, u, d)) = p2q, IPp ((d, d, u)) = pq2, and so on.
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Because each movement up contributes a factor of p and each movement down a
factor of q, the general formula is

IPp ((w1, . . . ,WN)) = pYN (w1,...,WN )qN−YN (w1,...,WN ), (2)

using the function Yt defined above which counts the number of u’s in a sequence.

A cultural aside: Random walk is a fundamental model of probability theory
applied in a wide variety of circumstances, and you likely studied it in your probability
course. Here, think of the movements up or down as corresponding to the steps of
a drunkard as he staggers out of a bar. Steps in the “up” direction take him closer
to home, steps in the “down” direction toward the cop in the opposite direction on
the street corner. The probability p is a measure of his inebriation. He only manages
to take a step in the right direction with probability p; having taken a step, he is
unaware if it is toward or away from home and it does not affect the direction of his
next step. As a model for the movements of a stock market, random walk goes back
to a thesis of Bachelier, written in the early twentieth century.

To continue the discussion of IPp, if A is a subset of possible market outcomes,
IPp(A) denotes its probability. To get IPp(A) one sums IPp(ω) over all outcomes in
A. We’ll see examples in a moment. We refer to IPp as a probability measure on Ω,
the set of possible outcomes; “probability measure” is math lingo for a rule assigning
probabilities to events.

Given a probability assignment IPp on Ω, functions on Ω truly become random
variables. There are two important facts to state right away.

(A) If the probability measure IPp is used, then, for each t, Yt is a binomial random
variable with parameter t and p; this means explicity that the probability mass
function of Yt is

IPp (Yt = k) =

(
t

k

)
pkqt−k (3)

This is easy to see. Think of the market movements as coin flips, with u
corresponding to heads and d to tails. Using IPp, Yt is the total number of
heads in t independent tosses, with p being the probability of heads. There
are

(
t
k

)
sequences of length t with exactly k heads and t − k tails and each

such sequence has probability pkqt−k, so the probability of k heads in t tosses is(
t
k

)
pkqt−k, as in (3).

(B) For any t, the possible values of St are gk`t−kS0, 0 ≤ k ≤ t, and

IPp
(
St = gk`t−kS0

)
=

(
t

k

)
pkqt−k, 0 ≤ k ≤ t. (4)
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This is an immediate consequence of the fact that Yt is binomial and of the
representation of St = gYy `

t−YtS0 found in (1).

Fact B allows us to calculate the expected values of prices. Expectation, calculated
using IPp will be denoted Ep[·]. By the definition of expected value, ifX is any function
of the random market path and if the possible values of X are x1, x2, . . . , xK , then

Ep[X] = x1IPp(X=x1) + x2IPp(X=x2) + · · ·+ xKIPp(X=xK). (5)

(A sloppy, but very convenient, way to write this definition is

E[X] =
∑
x

xIPp(X=x).

We will use this form often.)

Expected values of prices. The simplest calculation is the expected value of
Ep[S1]:

Ep[S1] = `S0IPp(S1 =`S0)+gS0IPp(S1 =gS0) = `S0IPp(w1 =u)+gS0IPp(w1 =d) = S0(`q+gp).
(6)

The expected return on the stock in one period is thus

E[S1]

S0

= `q + gp = `(1−p) + gp.

What about Ep[St] for general t? We use the information derived above in fact B.
Since the possible values of St are gk`t−kS0, 0 ≤ k ≤ t, and since the probability that
St equals gk`t−kS0 is

(
t
k

)
pkqt−k,

Ep[St] =
t∑

k=0

S0g
k`t−kS0

(
t

k

)
pkqt−k

= S0

t∑
k=0

(
t

k

)
(pg)k(`q)t−k

= S0(`q + gp)t. (7)

The last step is an application of the binomial theorem: (x + y)n =
∑n

0

(
n
k

)
xkyn−k.

Notice what equation (7) says; we just interpreted the factor (`q+gp) as the expected
return over one period. Equation (7) says that the expected return over t periods
is the expected return per period, raised to the power t: (`q + gp)t. Since market
movements in different periods are independent, this is exactly what we should expect.
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The next example is a worked problem to get more experience with computing
expectations in the random walk model.

Example. Consider a 4-period model with S0 = 32, g = 5/4, ` = 3/4, and p = 1/3.
Let max{S4 − 35, 0} be the payoff a European call option at strike 35 that expires
at the end of the fourth period. Find Ep[max{S4 − 35, 0}]. (If you believed that
upswings had probability 1/3, this would be the payoff you would expect on average
from the option.)

The three highest possible prices of S4 are

32(5/4)4 = 78.125, 32(5/4)3(3/4) = 48.875, 32(5/4)2(3/4)2 = 28.125.

The last price is below the strike, as are all the other prices, and the option will expire
worthless if they occur. Thus,

Ep[max{S4 − 35, 0}] = (78.125− 35)IPp(S4 =78.125) + (48.875− 35)IPp(S4 =48.875)

+0 · IPp(S4≤35)

= 43.125(1/3)4 + (13.875)

(
4

3

)
(1/3)3(2/3) = 1.90.

Before leaving this topic, it is useful to mention another formula that gives the
expectation. The formula (5) only relied on the underlyling market history probabil-
ities to compute IPp(X =x). This next formula works directly with X as a function
on the market histories: let X be a function on the market history space ΩN ; then

Ep[X] =
∑
ω

X(ω)IPp(ω). (8)

In this formula, the sum is to be interpreted as over all market histories ω in Ω.
This formula makes direct intuitive sense if you think about it; it says the expected

value is thesum of the values V (ω) weighted by the probability that ω is the market
history. To understand how formula (8) works and why it gives the right result,
consider first the example that we just did. Let V = max{S4 − 35, 0}. Write out V
as an explicit function of the market outcomes:

V (u, u, u, u) = 78.125− 35 = 43.125

V (u, u, u, d) = V (u, u, d, u) = V (u, d, u, u) = V (d, u, u, u) = 48.875− 35 = 13.875

V (w1, w2, w3, w4) = 0 for all other (w1, w2, w3, w4).

This is because, for instance, V (ω) = 43.125 precisely when S4(ω) = 78.125, which
occurs only if ω = (u, u, u, u), while V (ω) = 13.875 precisely when S4(ω) = 48.875,
which occurs only when ω belongs to the set {(u, u, u, d), (u, u, d, u), (u, d, u, u), (d, u, u, u)}.
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Start to write out the sum represented by the right side of (8) when X is replaced
by V . The full sum has 16 terms, one for each of the possible market histories of the
four period model. We’ll write out at least the non-zero terms:

V (u, u, u, u)IPp((u, u, u, u)) + V (u, u, u, d)IPp((u, u, u, d)) + V (u, u, d, u)IPp((u, u, d, u))

+V (u, d, u, u)IPp((u, d, u, u)) + V (d, u, u, u)IPp((d, u, u, u)) + · · ·
= 43.125(1/3)4 + 13.875(1/3)2(2/3) + 13.875(1/3)2(2/3)

+13.875(1/3)2(2/3) + 13.875(1/3)2(2/3).

Comparing to the example, it is clear that the answer is the same, and the reason is
that the sum over the last four terms is precisely 13.875 times the probability that V
equals 13.875.

Building on the insight of this example, let’s show why in general (5) and (8) both
compute the same thing. Imagine then that X is a function on the space Ω. For
convenience, suppose it takes 3 values, x1, x2, and x3. Let A1 be the set of all ω such
that X(ω)=x1, let A2 be the set of all ωsuch that X(ω) = x2, and let A3 be the set
of all ω such that X(ω) = x3. Since X has only these values A1, A2 and A3 form a
partition of ω. Now start with the sum in (8) and partition the sum into which Ai ω
falls: ∑

ω

X(ω)IPp(ω) =
∑
ω∈A1

X(ω)IPp(ω) +
∑
ω∈A2

X(ω)IPp(ω) +
∑
ω∈A2

X(ω)IPp(ω).

But the probability pp(A) of a setA of market histories is precisely IPp(A) =
∑
ω∈A IPp(ω);

and, by definition, X(ω) = xi if ω ∈ Ai. Thus, the last expression equals

x1IPp(X=x1) + x2IPp(X=x2) + x3IPp(X=x3),

and this is precisely Ep[X]. The reader will notice that there is nothing special
about the measure IPp that was used in this argument; the equivalence between (5)
and (8) holds if pp is replaced by any assignment of probabilities to the outcomes ω
whatsoever.

It is often useful, both in theory and computation, to use (8) instead of (5) and
that is why we have spent some time on it.

An aside for the probability theory nerd. In the advanced theory of probability,
(8), or rather, an abstruse generalization of it, is taken as the basic definition of
expectation, and (5) is deduced as a consequence, rather than the other way round,
as in elementary probability.
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IV. The risk-neutral measure on the binomial tree model.

A Risk-neutral measure for the one-period model recalled.
Recall the definition of the risk-neutral probabilities p̃ and q̃ in the one period

model: p̃ and q̃ = 1− p are uniquely defined by the condition,

S0 = e−rτ [`q̃ + gp̃] = e−rτ [`(1−p̃) + gp̃] . (9)

The no arbitrage condition ` < erτ < g, guarantees that a unique p̃ exists and that
p̃ and q̃ are both positive and As we pointed out in previous lectures, the right-hand
side of (9) defines the expectation of S1 if p̃ is set to the probability of u and q̃ to the
probability of d; we wrote (we had Sτ but now S1 is used in place of Sτ )

S0 = e−rτ Ẽ[S1] (10)

Multiplying on both side by erτ and dividing by S0:

`q̃ + gp̃ =
Ẽ[S1]

S0

= erτ . (11)

This identity says that the expected return on the stock under the risk-neutral proba-
bilities is the same as for the risk-free interest rate. This is fundamental. You should
make it your mantra! It explains the terminology of “risk-neutral.” Under the prob-
ability measure specified by p̃ and q̃, the expected return of the risky asset equals the
return on the risk free investment. In such a market, an investor who is neutral to
risk, that is, who does not factor risk into investment decision, would be indifferent
to investing in the stock and investing in the risk free instrument.

It must be emphasized that the risk-neutral probabilities are fictitious probabilities
introduced for pricing derivatives. The “real” probabilities of up and down swings,
if such exist, will in general be different. In fact, one should expect that for the
real probabilities, E[S1] > erτ . The reason is that most investors are expected to be
risk adverse. If the expected return on a risky asset is the same as for a risk-free
instrument, investors will take the risk-free route and there will be little market for
the risky asset. When E[S1] − erτ is positive, this difference can be thought of as a
premium necessary to induce investors to speculate on the risky asset.

Definition of the risk-neutral measure for the multi-period model.

Definition. In the multi-period, binomial tree model, the risk-neutral probability
measure is the random walk probability model, as defined above, using p̃ for the
probability of upswing and q̃ = 1− p̃ for the probability of downswing. That is, in
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each period, u occurs with probability p̃, d occurs with probability q̃, and market
movements in different periods are independent.

Following the notation of section III of these notes, we should write expectation
with respect to the risk-neutral measure as Ep̃[·]. However, we will use instead the
notation Ẽ[·].

The first important result partly justifies the terminology of “risk-neutral.”

Basic fact: For any t,
S0 = e−t(rτ)Ẽ [St] . (12)

This generalizes (10) to any number of periods; e−rτ is the discount factor per
period, so e−t(rτ) is the discount factor for r periods, with total duration of tτ years.
Hence, under the risk-neutral measure, the discounted expected value of the price
remains constant with the number of periods t.

Equation (12) is easy to derive. It is an immediate consequence of the formula (7)
for expected value of the price using the random walk measure and of (11). Indeed,
using these two formulas,

Ẽ[St] = S0 (`q̃ + gp̃)t = S0(erτ )t = S0e
t(rτ),

and so (12) follows immediately.

We saw that in the one period model, (10) extends to a formula for the no-arbitrage
price of any derivative: if V1 is the derivative pay-off at the end of the first period

V0 = e−rτ Ẽ[V1].

This generalizes to the multi-period, binomial tree, as we state next.

C. Pricing using the risk-neutral measure.

Consider a derivative security whose underlying is the stock in our binomial tree
model. Suppose the derivative expires at the end of period N , and denote its payoff
by VN . The backward induction algorithm we gave for pricing the derivative goes
as follows. The algoritm actually gives a price Vt(w1, . . . , wt) for each t, 0 ≤ t ≤ N
and market history (w1, . . . , wt) up to period t. These are found by solving, first for
t = N − 1, then for t = N − 2, etcetera, the following equation:

Vt(w1, . . . , wt) = e−rτ [q̃Vt(w1, . . . , wt, d) + p̃Vt(w1, . . . , wt, u)] (13)

The following result is so important that we state it as a theorem.
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Theorem 1 Let V0 be the price at time t = 0 found by solving (13). Then

V0 = e−N(rτ)Ẽ [VN ] (14)

The no-arbitrage price of any derivative is also the discounted expected value of
its payoff under the risk-neutral measure!
Example. We consider the problem solved in exercise 33, which is problem 1 on page
51 of the text. The solution is available online There the problem was to compute
the price of a call option that expires at the end of the third period with strike 115.
In the problem S0 = 120, g = 1.7, d = 0.8 and the interest rate per period is 1.06
(erτ = 1.06). In this case, we find

p̃ =
13

45
and q̃ =

32

45
.

Examining the price tree, the possible derivative payoffs are

589.56− 115 = 474.56 and ĨP (V =474.56) = p̃3;

277.44− 115 = 162.44 and ĨP (V =162.44) = 3p̃2q̃;

130.56− 115 = 15.56 and ĨP (V =15.56) = 3p̃q̃2;

0 otherwise.

because the first possibility occurs if there are three ups, the second if there are
two ups and a down, and the third if there are two downs and an up. If there are
three downs, the stock price falls below $115 and the option expires worthless. Thus,
according to Theorem 1,

V0 =
1

1.063

[
(15.56)3(13/45)(32/45)2 + (162.44)3(13/45)2(32/45) + (474.56)(13/45)3

]
= 39.61

This is what we got before.

As a second example, study the text on page 59 and 60 where Theorem 1 is applied
to price a look back option.

For small trees, applying Theorem 1 directly often gives a quicker procedure for
calculating the option price.
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