
640:495 Mathematical Finance: More about
Black-Scholes, pde analysis and Greeks.

I. A further comment on the Greeks and Black-Scholes pricing.
Consider a derivative security on an underlying asset that pays U(ST ) at time T ,

ST being the asset price at time T . If the price process {St, 0 ≤ t ≤ T} is assumed to
follow a Black-Scholes model with volatility σ, the no-arbitrage price of the derivative
at time t is given by V (t) = u(St, t) where u is a solution to the Black-Scholes partial
differential equation:
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u(S, T ) = U(S). (2)

The Black-Scholes pde (1) can be rewritten in terms of the greeks of the price
u(S, t) and so implies a standing relationship between their values:

Θu(S, t) + rS∆u(S, t) +
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σ2S2Γu(S, t)− ru(S, t) = 0. (3)

So, when working in the Black-Scholes framework, one can deduce the value of one
of these greeks if the other two are known.

To illustrate for yourself go to an online Black-Scholes price calculator and check.
For example at http://www.option-price.com/index.php, I entered X = 48, S =
50, t = 90 days, r = 5% and σ = 30% (σ = 0.3) and asked for rounding to 4
decimal places. The calculator gives a call price of 4.3925, a delta of 0.6664, and a
Theta of −0.019(365) = 6.935. (Note: this option calculator give daily theta, and the
number must be multiplied by 365 because the theta in the Black-Scholes pde must
be denominated in the unit of time which is used for the volatility and interest rate,
and this is yearly. Plugging these into equation (3),

−0.0189 + (.05) · (50) · (.6664) + (.045) · (50)2Γ− (0.05)(2.2697) = 0.

Solving for Γ, gives Γ = 0.0488, which matches the gamma given by the option
calculator.

II. A heuristic for Itô’s rule applied to price processes.

Let {St} denote the price of an asset. Let g(S, t) be a function of price and
time. Itô’s rule implies the following heuristic for how g(St, t) changes over a small
increment of time:
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The student should compare this to the second order approximation formula discussed
in the previous set of notes on Portfolios and Greeks—see the approximation in equa-
tion (4) of those notes. (This approximation was illustrated in the last example of
these notes.)

Typically, price models in continuous time are given in the form dSt = αt dt+βt dBt

where B is a Brownian motion. In this case, one may obtain the Itô rule proper by
replacing (dSt)

2 in (4) by β2
t dt, because the expansion of (dSt)

2 is α2
t dt+2αtβt dt dSt+

β2
t (dBt)

2, and Itô tells us to throw away the terms with dt dSt or (dt)2 and replace
(dBt)

2 by dt. Thus, from (4) we recover:
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III. Generalizing the Black-Scholes model.

The Black-Scholes price model with drift µ and volatility σ is St = So exp{(µ −
σ2/2)t+ σBt}. We have seen by applying Itô’s rule that this model is equivalent to

dSt = µSt dt+ σSt dBt.

To understand some of the underlying assumptions behind this model, divide both
sides of the equation by St:

dSt
St

= µ dt+ σ dBt. (6)

The quantity on the left hand side, the ratio of the change of price over a succeeding
small time increment with the current price, is an incremental rate of return. The
left hand side is the sum of a small deterministic movement of size µ dt and a random
fluctuation which one may think of as a normal random variable with mean 0 and
standard deviation σ

√
dt. Equation (6) says that this incremental rate of return is

independent of the current price level. For example, suppose the daily volatility is
%2 and daily drift is $0.03 for a certain stock. The relative return will fall within two
standard deviations of its mean with probability about .95; the interval two standard
deviations about the mean is [0.03+0.04, 0.03 + 0.04] = [−0.01, 0.07]. This interval
gives the order of the day to day fluctuations of the incremental return. If the stock is
trading around $5 the numerical values of the price fluctuation itself are 5 times these
returns, that is fluctations lying in the interval from $− .05 to $.35. However, if the
stock is trading around $10, the fluctuations of the price itself will be twice as great,
ranging with probability 0.95 in [−.10, 0.70]. Thus for the Black-Scholes model, the
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price fluctuations scale with the price; for a price two times as large, the fluctuations
are two times as large; if the price is three times as large, the fluctuations are three
times as large, etc.

One can imagine that more accurate price models could be built by allowing the
drift and volatility of a stock to depend on the price level. Certainly this would be
more general, and probably more realistic. Thus, one would replace µ by a function
m(S), and σ by a function γ(S) and write a price model in the form:

dSt = m(St) dt+ σγ(St)St dBt. (7)

The first question one most ask is whether this makes mathematical sense. In other
words, given m and γ can we find some process St that depends at each t on the
Brownian motion path up to time t and that satisfies this equation. We did not
have to answer this question for the Black-Scholes model because we had an explicit
formula for St in terms of the Brownian motion B. For most equations of the form (7)
we cannot find such an explicit formula, but a theory for (7), known as the theory of
stochastic differential equations, says that, yes, (7) admits solutions under only mild
conditions on m and σ. We will not worry about this. Our main point is to bring
up the generalization because it is important in applications in which quants try to
build better models.

But there is a very important point we wish to make. In general, if (7) is our
reference model for an asset price, one is not able to derive option prices in an explicit
form, like the Black-Scholes formula. However, the technique for deriving the Black-
Scholes pde generalizes immediately and easily to these more general models, allowing
one derive a partial differential equation for the price function. Since these pde’s are
amenable to numerical solution by fairly standard techniques, we have a practical tool
to get option prices with (hopefully) more accurate models having price dependent
volatilities.

As an example, we will solve homework problem 89. Consider a derivative security
that pays (ST ) at time T . The steps of the method, as we have applied them previously
are

(i) Replace m(S) in (7) by rS. This is the risk-neutrality assumption.

(ii) Assume that we can find a replicating portfolio Πt for the derivative such that
Πt has the form Πt = u(St, t). This requires that

u(S, T ) = U(S) (8)

and
du(St, t) = dΠt = (Πt − φtSt)r dt+ φt dSt, (9)

for some hedging function φt that represents the number of shares of stock held
at time t.
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(iii) apply Itô’s rule to evaluate the left hand side of (9) and find a partial differential
equation for u(S, t) and an expression for the hedging function φt by equation
coefficients of dt and dBt in (9).

Let us carry this out for the price process

dSt = rS dt+ σ
√
St dSt.

First observe that, using this in (9) and using the assumption Πt = u(St, t),

dΠt = (Πt − φtSt)r dt+ φt dSt = ru(St, t) dt+ φtσ
√
St dBt, (10)

since the φtrSt term from φt dSt cancels out the same term from (Πt − φtSt)r dt.
Now apply Itô’s rule as in (5) but with αt = rSt and βt = σ

√
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By equating the coeffiecient’s of dBt in this expression and in (10), we get φtσ
√
St =

σ
√
St

∂u
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(St, t), and for this to be true we require

φt =
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∂S
(St, t). (11)

(This much we can automatically expect by the delta hedging principle!) Now equate
the dt coefficients:
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This requires that u satisfy the partial differential equation
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Of course u must also satisfy (8); equations (8) and (12) together constitute the pde
with terminal condition characterizing the price. (In addition, one can also demand
u(0, t) ≡ 0, since if the price hits zero the company goes bankrupt and the option
cannot be exercised.) �

There was nothing too special about
√
St in this exercise. It is easy to follow

through and see that if dSt = rSt dt + γ(St)St dSt, the pde is simply Black-Scholes
with σ replaced by γ(S);
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