Minima and Maxima

1. Over all sequences of positive integers that sum to 1000, determine the one whose product is maximum.

2. A collection of tennis players play a tournament in which each pair of players plays one match. A player \(p \) is called weakly dominant if for every other player \(q \), \(p \) beat \(q \) or \(p \) beat at least one player that beat \(q \). Prove that there is at least one weakly dominant player.

3. If \(S \) is a set of real numbers, let \(A(S) \) be the set of numbers of the form \((x + y)/2\) where \(x, y \in S \). For each positive integer \(n \) determine the minimum size of \(A(S) \) over all sets \(S \) of size \(n \).

4. Suppose that \(f \) is a continuous function on \([0, 1]\) such that for each \(j \in \{0, 1, \ldots, n - 1\} \)
\[
\int_0^1 x^j f(x) = 0.
\]
and
\[
\int_0^1 x^n f(x) = 1.
\]
Prove that the maximum of \(|f(x)| \) on \([0, 1]\) is greater than \(2^n(n + 1) \).

5. Putnam 1998:B1) Find the minimum value of:
\[
\frac{(x + 1/x)^6 - (x^6 + 1/x^6) - 2}{(x + 1/x)^3 + (x^3 + 1/x^3)}.
\]
for \(x > 0 \).

6. (Putnam 1993:B1) Find the smallest positive integer \(n \) such that for every integer \(m \) with \(0 < m < 1993 \), there is an integer \(k \) for which \(m/1993 < k/n < (m + 1)/1993 \).

7. (Putnam 1988:B3) For every \(n \) in the set \(\mathbb{N} \) of positive integers, let \(r_n \) be the minimum of \(|c - d\sqrt{3}| \) over all nonnegative integers \(c \) and \(d \) with \(c + d = n \). Find, with proof, the lease positive real number \(y \) such that \(r_n \leq y \) for all \(n \in \mathbb{N} \).

8. Putnam 1991:B6. Let \(a, b \) be positive numbers. Find the largest number \(c \) in terms of \(a \) and \(b \) such that
\[
a^x b^{1-x} \leq a \frac{\sinh u x}{\sinh u} + b \frac{\sinh u(1-x)}{\sinh u},
\]
for all \(u \) satisfying \(0 \leq |u| \leq c \) and for all \(x, 0 < x < 1 \).