Suggested problems for 10/31/06

1. Let \(P \) be a non-constant polynomial given by:

\[
P(x) = a_nx^n + \cdots + a_1x + a_0.
\]

Assume that \(P \) has \(n \) distinct nonzero roots \(r_1, \ldots, r_n \). Prove that:

\[
\frac{1}{r_1} + \cdots + \frac{1}{r_n} = -\frac{a_1}{a_0}.
\]

2. For \(k \) a nonnegative integer and \(x \) a variable define:

\[
\binom{x}{k} = \frac{x(x-1)\ldots(x-k+1)}{k!}.
\]

Let \(P(x) \) be a real polynomial of degree \(n \).

(a) Prove that there are unique reals \(a_0, a_1, \ldots, a_n \) such that \(P(x) = a_0\binom{x}{0} + a_1\binom{x}{1} + \cdots a_n\binom{x}{n} \).

(b) Prove that the coefficients \(a_0, \ldots, a_n \) in the first part are all integers if and only if \(P \) maps integers to integers.

3. Prove that if the quadratics \(ax^2 + bx + c \) and \(px^2 + qx + r \) have a common root then \((ar - cp)^2 = (aq - bp)(br - cq)\).

4. Prove that if \(P \) and \(Q \) are polynomials with \(P^2 - Q^3 = 1 \) then \(P \) and \(Q \) are constant polynomials.

5. Let \(P(x) \) be a polynomial of degree \(n \geq 1 \) and distinct roots \(r_1, \ldots, r_n \). Prove that for any number \(a \) such that \(P'(a) \neq 0 \) there is an \(i \in \{1, \ldots, n\} \) such that \(|a - r_i| \leq n|P(a)|/|P'(a)| \).

6. (Putnam 1985, B2) Define polynomials \(f_n(x) \) for \(n \geq 0 \) by \(f_0(x) = 1 \), \(f_n(0) = 0 \) for \(n \geq 1 \) and \(f'_{n+1}(x) = (n+1)f_n(x+1) \) for \(n \geq 0 \). Find with proof, the explicit factorization of \(f_{100}(1) \) into powers of distinct primes.

7. (Putnam 1986, A6) Let \(a_1, \ldots, a_n \) be real numbers and \(b_1, \ldots, b_n \) be distinct positive integers. Suppose there is a polynomial \(f(x) \) satisfying:

\[
(1-x)^n f(x) = 1 + \sum_{i=1}^{n} a_i x^{b_i}.
\]

Find a simple expression (not involving summations) for \(f(1) \) in terms of \(b_1, \ldots, b_n \) and \(n \) (but independent of \(a_1, \ldots, a_n \)).

\(^1\)Version:10/24/06
8. (Putnam 1986, B5). Let \(f(x, y, z) = x^2 + y^2 + z^2 + xyz \). Let \(p(x, y, z), q(x, y, z), r(x, y, z) \) be real polynomials satisfying:

\[
 f(p(x, y, z), q(x, y, z), r(x, y, z)) = f(x, y, z).
\]

Prove or disprove the assertion that the sequence \(p, q, r \) consists of some permutation of \(\pm x, \pm y, \pm z \) where the number of minus signs is 0 or 2.

9. (Putnam 1991, B5). Is there an infinite sequence \(a_0, a_1, a_2, \ldots \) of nonzero real numbers such that for \(n = 1, 2, 3, \ldots \) the polynomial \(p_n(x) = a_0 + a_1x + \cdots + a_nx^n \) has exactly \(n \) distinct real roots?