Accelerated sequences usually converge faster

Theorem 2.13 on page 88 of Burden and Faires is incorrect as stated in the text. We
provide a corrected version and examples here.
Recall that if p,, is a sequence which converges to p linearly, we define a new sequence
Prn by the formula
(pn—H — pn)2
Pn+2 = 2Pnt1 +Dn

ﬁn =Pn —
For example, if p,, = 1/n we have
pn=1/n—(1/(n+1)—=1/n)/(1/(n+2)—=2/(n+1)+1/n=1/(2(n+ 1))

which converges to 0, but not much faster than the original sequence. The problem is that
for this sequence it converges linearly, but lim, o (pn+1/pn) = 1. The modification of the
theorem in the book which is true is the following.

Theorem: (corrected version of 2.3). Let {p,} be a sequence that converges linearly to a
limit p and such that lim, . (prn+1 — P)/(Pn — p) = A < 1. Suppose for large n we have
(Pnt1—p)(pn —p) > 0. Then the accelerated sequence {p, } defined above converges faster
than the original sequence in the sense that lim, o (pn — p)/(pn —p) = 0.

Proof: We follow the suggestion of problem 14 of section 2.5. Write

(Prnt1 — )/ (Pn — ) = A+ dy.

Then by assumption that lim, oo (pn+1/Pn) = A we have lim,, .~ 6, = 0. The assumption
on the sign in the theorem shows that for large n (p+1—p)/(Pn—0) = |(Pn+1—p)/ (P —Dp)|.

We have that (pn+1 _p) = (pn_p)()\+5n)a so that (pn+2 _p) = (p’nJrl _p)()\+5n+1) =
(pn — P)(A 4 ) (A + 0r41). Using this we can write

Pl —Pn = Png1 —P) — (0 —pPn) = A+ 0n — 1)(pn — D)
and
Prt2 = 2Pnt1 +Pn = (Pni2 — D) — 2(Pny1 —p) + (P — p) =
(A +00) A+ 0ny1) = 2N+ 6n) + 1) (pn — )
Using these we get

o A+ 6, — 1)2%(pn — p)?
Pn—P=Pn—DP (AN +0) A+ 0pt1) =2+ 6n) + 1) (pr — p)

and dividing both sides by p,, — p gives that

ﬁn_p:l_ ()‘"'_571_1)2
Pn —D ((/\+5n)()‘+5n+1) - 2(/\+5n) + 1)

1



As n approaches oo the denominator of the right hand side approaches A2 — 2\ + 1
which is not 0 since |[A| < 1. Thus we take the limit of the numerator and denominator
and divide, to give that

im 222 1 (A —1)2/A—22+1)=1-1=0

n—o0 Pp — P

as claimed in the theorem.

Example: The usual application of the theorem is to accelerate the linear converge of
a fixed point iteration. Since we are usually in the situation where the derivative of the
function iterated is bounded above by a constant k£ < 1, we have linear convergence with
the A of the theorem satisfying A < k£ < 1 so the accellerated series actually converges
faster.

For a simple example of this, consider g(x) = 7 4 .999999 sin(x) which has a fixed
point at 7. Since the sin function is between -1 and 1, the interval [2,4] is mapped to
itself by g(x), so the fixed point iteration theorem tells us that taking pp = 3 and defining
pn=1 = g(py,) will give a sequence converging to w. The problem is that it converges very
slowly. In fact, taking k = .999999 even after a million iterations we have k10° = 0.367 so
that we do not get much accuracy. If we take 100000 iterations we get p10ooo0 = 3.1363...,
not a great approximation to 7. If instead we accelerate the convergence by taking pg, p1 =

9(po),p2 = g(p1), o = P2 — (p1 — po)?/ (P2 — 2p2 + po) and iterating by replacing po by po
and continuing this scheme (Steffensen’s method) we obtain the sequence

qo = 3.141591866602674158623327009

g1 = 3.141592653589793238462643342

which already agrees with m to more than 15 decimal places.



