
Accelerated sequences usually converge faster

Theorem 2.13 on page 88 of Burden and Faires is incorrect as stated in the text. We
provide a corrected version and examples here.

Recall that if pn is a sequence which converges to p linearly, we define a new sequence
p̂n by the formula

p̂n = pn −
(pn+1 − pn)2

pn+2 − 2pn+1 + pn
.

For example, if pn = 1/n we have

p̂n = 1/n− (1/(n+ 1)− 1/n)/(1/(n+ 2)− 2/(n+ 1) + 1/n = 1/(2(n+ 1))

which converges to 0, but not much faster than the original sequence. The problem is that
for this sequence it converges linearly, but limn→∞(pn+1/pn) = 1. The modification of the
theorem in the book which is true is the following.

Theorem: (corrected version of 2.3). Let {pn} be a sequence that converges linearly to a
limit p and such that limn→∞(pn+1 − p)/(pn − p) = λ < 1. Suppose for large n we have
(pn+1−p)(pn−p) > 0. Then the accelerated sequence {p̂n} defined above converges faster
than the original sequence in the sense that limn→∞(p̂n − p)/(pn − p) = 0.

Proof: We follow the suggestion of problem 14 of section 2.5. Write

(pn+1 − p)/(pn − p) = λ+ δn.

Then by assumption that limn→∞(pn+1/pn) = λ we have limn→∞ δn = 0. The assumption
on the sign in the theorem shows that for large n (pn+1−p)/(pn−p) = |(pn+1−p)/(pn−p)|.

We have that (pn+1−p) = (pn−p)(λ+δn), so that (pn+2−p) = (pn+1−p)(λ+δn+1) =
(pn − p)(λ+ δn)(λ+ δn+1). Using this we can write

pn+1 − pn = (pn+1 − p)− (p− pn) = (λ+ δn − 1)(pn − p)

and
pn+2 − 2pn+1 + pn = (pn+2 − p)− 2(pn+1 − p) + (pn − p) =

((λ+ δn)(λ+ δn+1)− 2(λ+ δn) + 1)(pn − p)

Using these we get

p̂n − p = pn − p−
(λ+ δn − 1)2(pn − p)2

((λ+ δn)(λ+ δn+1)− 2(λ+ δn) + 1)(pn − p)

and dividing both sides by pn − p gives that

p̂n − p
pn − p

= 1− (λ+ δn − 1)2

((λ+ δn)(λ+ δn+1)− 2(λ+ δn) + 1)
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As n approaches ∞ the denominator of the right hand side approaches λ2 − 2λ + 1
which is not 0 since |λ| < 1. Thus we take the limit of the numerator and denominator
and divide, to give that

lim
n→∞

p̂n − p
pn − p

= 1− (λ− 1)2/(λ− 2λ+ 1) = 1− 1 = 0

as claimed in the theorem.

Example: The usual application of the theorem is to accelerate the linear converge of
a fixed point iteration. Since we are usually in the situation where the derivative of the
function iterated is bounded above by a constant k < 1, we have linear convergence with
the λ of the theorem satisfying λ ≤ k < 1 so the accellerated series actually converges
faster.

For a simple example of this, consider g(x) = π + .999999 sin(x) which has a fixed
point at π. Since the sin function is between -1 and 1, the interval [2,4] is mapped to
itself by g(x), so the fixed point iteration theorem tells us that taking p0 = 3 and defining
pN=1 = g(pn) will give a sequence converging to π. The problem is that it converges very
slowly. In fact, taking k = .999999 even after a million iterations we have k106

= 0.367 so
that we do not get much accuracy. If we take 100000 iterations we get p100000 = 3.1363...,
not a great approximation to π. If instead we accelerate the convergence by taking p0, p1 =
g(p0), p2 = g(p1), p̂0 = p2 − (p1 − p0)2/(p2 − 2p2 + p0) and iterating by replacing p0 by p̂0

and continuing this scheme (Steffensen’s method) we obtain the sequence

q0 = 3.141591866602674158623327009

q1 = 3.141592653589793238462643342

which already agrees with π to more than 15 decimal places.
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