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Steffensen Acceleration
Given a functiong, for which we seek afixed point, we define a new function

S(x) = x −
(

g(x)− x
)2

g
(

g(x)
)− 2g(x)+ x

.

This fails to be defined ifg(g(x))−2g(x)+x = 0, but otherwise, this definition givesS(x) = x if g(x) = x.
Our goal is to show that the process of iteratingS is usually quadratically convergent, and to estimate the
rate of convergence in terms of properties of the functiong. We will also consider how the accuracy with
which g(x) can be computed affects the accuracy of the rootfinding by this method.

The main tool will be Taylor series about a fixed point ofg which will be denotedx∞. However,
we don’t want to specify in advance how many terms of the Taylor series are to be calculated, so we need
some way to find the effect of computing more terms of a series in a computation without repeating the
computation. This can be done by adding a subscript to theξ in the Taylor series error term that will identify
the series that was used in its computation. When the series is refined, most of the terms in the new series
will be the same as the terms of the old series, and the remaining terms contain the known part of the error
term as a factor. This should be clear enough when it is done even if it is awkward to describe in the abstract.

The first form of Taylor’s theorem is theMean Value Theorem. For the functiong it takes the form

g(x) = g(x∞)+ g′(ξ1) · (x − x∞)

= x∞ + g′(ξ1) · (x − x∞)

g(x)− x∞ = g′(ξ1) · (x − x∞)

g(x)− x = g′(ξ1) · (x − x∞)− (x − x∞)

= ( g′(ξ1)− 1
) · (x − x∞)

where the second form of the equation uses the assumption thatx∞ is a fixed point ofg, and the other
expressions use simple algebraic manipulation. Note that this expression shows thatg(x)− x andx − x∞
are of comparable size ifg′ is bounded away from 1 nearx∞. Since the iteration must stop ifg(x) andx
cannot be distinguished, this shows that a convergent iteration will usually approximate the fixed point about
as well as possible. Although we often pretend that the expressions that we write can be evaluated exactly,
it is more realistic to say that one always has a fixed computational accuracyε (typically about 10−10 on a
calculator or 10−16 using the floating point registers of a computer, although better (i.e., smaller) values can
be simulated in software) such that numbersx0 andx1 cannot be distinguished if|x0− x1| < εx0. When
a difference of very close quantities appears in a computation, the difference is known to reduced relative
accuracy because the accuracy of a computation is relative to the largest number appearing in the calculation,
not to the answer.

Applying the same result withg(x) in place ofx gives

g
(

g(x)
)− x∞ = g′(ξ2) ·

(
g(x)− x∞

)
= g′(ξ2) · g′(ξ1) · (x − x∞)



Thus

g
(

g(x)
)− 2g(x)+ x =

(
g
(

g(x)
)− x∞

)
− 2

(
g(x)− x∞

)
+
(

x − x∞
)

= ( g′(ξ2) · g′(ξ1)− 2 · g′(ξ1)+ 1
) · (x − x∞)

=
( (

g′(ξ2)− 1
) · g′(ξ1)− ( g′(ξ1)− 1

) ) · (x − x∞)

From this one sees that, ifg′(ξ1) andg′(ξ2) are both close to some number other than 1, the denominator in
the calculation ofS(x) will be a reasonablemultiple of(x− x∞), so the denominator will only appear to be
zero if the root has been found to the full accuracy allowed in our computation. In computing the numerator,
one first findsg(x) − x, which also retains accuracy until the relative accuracy of the root is close to that
allowed in the computation. Although this quantity becomes much smaller when squared, there will only be
a small loss inrelativeaccuracy in that computation. This suggests that this computation can be performed
as long as one can detect any difference betweenx andg(x).

Since we now have confidence that we can compute the expression forS(x) as it is written, we can
apply algebraic simplification to this expression to see what it is that we have computed.

S(x)− x∞ = x − x∞ −
(

g′(ξ1)2− 2g′(ξ1)+ 1
) · ( x − x∞

)2(
g′(ξ2) · g′(ξ1)− 2 · g′(ξ1)+ 1

) · ( x − x∞
)

= g′(ξ2) · g′(ξ1)− g′(ξ1)2

g′(ξ2) · g′(ξ1)− 2 · g′(ξ1)+ 1
· ( x − x∞

)
= g′(ξ1) ·

(
g′(ξ2)− g′(ξ1)

)
g′(ξ2) · g′(ξ1)− 2 · g′(ξ1)+ 1

· ( x − x∞
)

Although this could be used to identify functionsg for which the correspondingS is contracting, it does
not appear to lead to any useful criteria. However, the right side contains factors of bothx − x∞ and
g′(ξ2)−g′(ξ1) indicating that quadratic convergence should be expected. To obtain such a bound, additional
terms of the Taylor series ofg are needed. From

g(x) = g(x∞)+ g′(ξ1) · (x − x∞)

g(x) = g(x∞)+ g′(x∞) · (x − x∞)+ g′′(ξ3)
2

(x − x∞)2,

it follows that

g′(ξ1) = g′(x∞)+ g′′(ξ3)
2

(x − x∞).

Similarly,

g′(ξ2) = g′(x∞)+ g′′(ξ4)
2

(g(x)− x∞)

= g′(x∞)+ g′′(ξ4)
2

g′(ξ1)(x − x∞).

Thus,

g′(ξ2)− g′(ξ1) = 1

2

(
g′′(ξ4)g′(ξ1)− g′′(ξ3)

) · ( x − x∞
)



and this shows thatS(x)− x is the product of a bounded quantity and(x− x∞)2 if g′ is bounded away from
1 for the values needed in the calculation.

Recall that quadratic convergence gives a doubling of accuracy at each step when you get close enough
to the fixed point. That is, a statement of the form

|S(x)− x∞| ≤ M |x − x∞|

can be rewritten as
M |S(x)− x∞| ≤

(
M |x − x∞|

)2
,

so that each iteration ofSdoubles the number of correct digits ofx∞ knownwhen measured in units of1/M .

For S(x), the value ofM becomesg′(ξ)g′′(ξ)
2(g′(ξ)−1) if we are confined to an interval where

∣∣g′′(ξ)∣∣ is small, which

forcesg′(ξ) to change very slowly.
If the iteration ofg is itself quadratically convergent, this analysis shows that the accelerated iteration

S will have cubic convergence. This is misleading since it depends on two iterations of something that is
quadratically convergent, and the second iterate has an error that is afourth powerof the original error. In
this case the Steffensen extrapolation has slowed the rate of convergence.


