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Introduction to Numerical Integration
The treatment of integration in the text lacks the emphasis to distinguish the useful methods from

those with similar formulas that have serious flaws. The formulas are also described in such a way that the
interpretation of the variables in the statements is sometimes different from what it appears to be. Since
numerical methods are sensitive to the order in which computations are performed, it is not sufficient to have
describe the process by an expression that can only be guaranteed to be correct if the quantities it contains
can be knownexactly. In addition to controllingerror, the computation should be described in a way that
guards against theblunder of misinterpreting a quantity in the formula. For this reason, the process of
approximating integrals will be presented here in terms of some general principles rather than in terms of
formulas.

Definite Integrals. In elementary calculus, most of the emphasis is on the indefinite integral and its cal-
culation by finding a function whose derivative is the given integrand. Although there are warnings that
many expressions cannot be integrated in terms of the functions that you know, you usually don’t meet
such integrals in textbook exercises or exam questions. You are even encouraged to signal the end of your
computation of the integral by adding “+ C” to the function that you believe to be the answer.

When it comes to applications, the integral sign is decorated with “limits of integration” and the
indefinite integral must be evaluated at these limits and the lower value subtracted from the upper. One
effect of this is to make your+C irrelevant. If the integral requires a substitution in its evaluation, you may
either express the answer in terms of the original variable before evaluation (as in the determination of the
indefinite integral) or develop rules for applying the substitution to the limits of integration also. The latter
approach allows the integral to be simplified by substitution. You should review the discussion of this in
your Calculus text so you have some examples handy when it is used here.

In the theoretical sections of the course, which usually have little relevance to the exam problems, the
definite integral isdefinedas a limit of sums, and the indefinite integral appears as a definite integral with a
variable upper endpoint.

In numerical work, only definite integrals can be calculated, and the methods resemble
the sums whose limit is used in the theoretical definition.

Averages. Calculus textbooks usually include a definition of the “average value of the functionf on the
interval [a,b]” as

1

b− a

∫ b

a
f (x)dx.

At the time it seems like just another definition that must be memorized. However, it will be extremely useful
for organizing the numerical calculation of integrals. In a sense, the definition should be turned around so
that the integral froma to b becomes that average on [a,b] times(b− a).

The usual use of the word “average” applies to a finite list of values. In this context, the average is
thesumof the values divided by thecountof the values. An alternate description is that each value should
be multiplied by the reciprocal of the count, and these quantities added. A slightly more general notion of
average, which simulates repetitions in the list, is theweighted averagein which the given valuesVi are
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multiplied by weightswi whose sum is 1 so that

Avg. =
∑

wi Vi where
∑

wi = 1.

Frequently, we require that allwi ≥ 0, because it is then an easy consequence that

min Vi ≤ avgVi ≤ maxVi .

All numerical formulas approximate the average of a function on an interval by a
weighted average of a list of values of the function on that interval.

The trapezoidal rule The first idea for approximating the integral of a function on an interval [a,b] is to
compute the values of the function at a small number of points and integrate the interpolating polynomial
taking these values. We have estimated the interpolation error, so the accuracy of this approximation can
be determined by integrating the expression for the interpolation error. In these error estimates, thef (k)(ξ)
should be replaced by itslargestvalue on [a,b], or even by a deliberate overestimate produced by ignoring
the signs of the individual terms in an expression for this derivative and using the triangle inequality to bound
the absolute value of the sum, to obtain something that is known to be an upper bound on the error. This
assures that any correct use of the formula will be more accurate. This allows you to use known data to detect
bugs in your program as well as to adjust parameters to assure that it will produce reliable results when used
for new results. Although the first formulas obtained have significant limitations, the error estimates contain
some encouraging features that will be used in developing practical methods of numerical integration.

If we use only the endpointsa andb, we are interpolating by a straight line and the interpretation of the
integral as an area shows that the integral is the area of the trapezoid bounded by the interval [a.b] on thex
axis, the linesx = a andx = b and the line joining(a, f (a)) to (b, f (b)) which approximates the graph of
y = f (x). The corresponding expression for the average is

f (a)+ f (b)

2
.

The error in the interpolation formula isf ′′(ξ)(x−a)(x−b)/2. The fixed part of this expression,(x−a)(x−b)
is a function that is negative for allx betweena andb (and zero at the endpoints). This means that

max f ′′(x)
2

(x − a)(x − b) ≤ f ′′(ξ)
2

(x − a)(x − b) ≤ min f ′′(x)
2

(x − a)(x − b)

The extreme values of the functionf ′′ are just numbers, so the integral of the interpolation error is bounded
by constant multiples of the integral of(x − a)(x − b). This integral is−(b− a)3/3, so the error in the
integral is between−(b− a)3/6 times the extreme values off ′′(x). This will be avalueattained by the
second derivative somewhere in [a,b].

To get the error estimate for the average off , it is only necessary to divide this by(b− a), so linear
interpolation has an error estimate of the form− f ′′(ξ)(b− a)2/6 for the average. If the sign off ′′(ξ) does
not change asξ runs froma to b, this expression allows us to predict the sign of the error as well as its size.
Thus, a positive second derivative signifies that the graph isconcave upward, which implies that all chords
lie above the curve. Linear interpolation, on which the trapezoidal rule is based, uses these chords, so it
is sure to be larger than the function. Although we insist on using aworst caseanalysis in creating error
estimates, retaining information about the shape of the interpolation error bound gives a bound for the error
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in determining the average that is one-third of the estimate of the worst error in estimating a value of the
function.

The error in estimates of averages have a similar form to the error in estimating indi-
vidual values of the function, but include an extra small numerical factor. They also agree
in sign with the interpolation error when that has a consistent sign.

Normalized constructions. When more terms are included, the expressions for the integral of the interpo-
lating polynomial and for the error terms get more complicated. Performing these integrals in terms of the
parametersa andb leads to a large number of terms thateventuallycombine to a power of(b−a). It would
be nice if the terms could be obtained from the beginning in a simple form.

If x is a variable on the interval [a,b], we can write

x = a+ t (b− a)

wheret is a variable on the interval [0,1]. That ist = 0 corresponds tox = a, t = 1 corresponds tox = b,
and in any integral,

dx = (b− a)dt.

Moreover, if our integrand is a product of factors of the form(x − xi ), each factor will be(t − ti ), where

xi = a+ ti (b− a).

That is, ∫ b

a

n∏
i=1

(x − xi )dx = (b− a)n+1
∫ 1

0

n∏
i=1

(t − ti )dt,

whenn factors of(b− a) come from the terms of the product and one comes from thedx. When restated
for averages, one lower power of(b− a) occurs since the average inx needs to be divided by(b− a), but
the average int is equal to the integral since the interval has length 1.

The average of a function that is a product of differences of the variable to a list of points
is the product of a constant depending on the relative position of the points in the interval
with the length of the interval raised to a power equal to the number of factors in the product.

Using the Lagrange form. If the interpolation formula is expressed in Lagrange form, the function values
are multiplied by terms that also have factors ofxi − xj in their denominators. Normalization changes these
to (b − a)(ti − tj ) and all factors of(b − a) in the change-of-variables formula disappear. That is, the
multiplier of f (xi ) in the computation of theaverage(the expression for the integral must retain one factor
of the length of the interval) can be done using the relative position of the points in a normalized interval.
Since the sum of the polynomials appearing in the Lagrange form corresponds to the unique polynomial of
lowest degree that interpolates a functiong(x) with g(xi ) = 1 at the given set ofxi , it must be the constant
function 1 whose average is 1.

The error term behaves differently because it is expressed in term of a high order derivative of the
function instead of individual values of the the function. If the interval were to be normalized and derivatives
taken with respect tot instead ofx, the chain rule would generate a factor of(b− a) when each derivative
was computed. Since these are constant factors, they remain as factors through the calculation of later
derivatives. The factors of(b− a) that appeared from normaling the integral of the error term can also be
though of as arising from transferring the function to the normalized interval. The other factor in the error
term is found by integrating a product of all(t − tj ) from 0 to 1 and dividing by a suitable factorial.
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Any average computed from the Lagrange interpolation formula is given by multiplying
function values by some coefficients whose sum is 1. The order of the derivative in the error
term is exactly matched by a factor that would be produced by differentiating with respect
to the parameter on the normalized interval. The other factor depends only of the relative
position of the xi in [a,b] and can be calculated on the normalized interval.

Simpson’s rule. Now, interpolate a quadratic on [0,1] using the points 0,1/2 and 1. It is easy to calculate
that ∫ 1

0

(t − 1/2)(t − 1)

(0− 1/2)(0− 1)
dt = 1/6∫ 1

0

(t − 0)(t − 1)

(1/2− 0)(1/2− 1)
dt = 2/3∫ 1

0

(t − 0)(t − 1/2)

(1− 0)(1− 1/2)
dt = 1/6

The integrand in the error term is
1/6(t − 0)(t − 1/2)(t − 1)

times an expression based on thef ′′′(ξ) factor, that it is sampling values of the third derivative on the interval.
However, the part that we have displayed has integral zero, so the formula would beexactwhen applied to
a polynomial of degree 4. However, our conservative strategy for estimating the error would require us to
prepare for a function whose sign exactly matched the displayed factor, so we use a bound of the largest
absolute value of the third derivative times

1/6

∫ 1

0

∣∣(t − 0)(t − 1/2)(t − 1)
∣∣ dt = 1/3

∫ 1/2

0
(t − 0)(t − 1/2)(t − 1)dt = 1

192

This seems pretty good, as long as the third derivative is small, but we know that we can do better if the
third derivative is large, but almost constant, i.e. if thefourth derivative is small. How can we modify the
formula?

The answer is to count the point1/2 twice. Instead of computing a new Lagrange-Hermite formula in
this case, divided differences can be used to identify the new term as

f [a,
a+ b

2
,b,

a+ b

2
](x − a)(x − a+ b

2
)(x − b).

Since divided differences do not depend on the order of the quantities in the bracket, the divided difference
could be computed as

f [a,
a+ b

2
,

a+ b

2
,b]

using

f [
a+ b

2
,

a+ b

2
] = f ′

(
a+ b

2

)
when it is needed in the computation. However, after normalization, this term leads to aconstantmultiple
of ∫ 1

0
(t − 0)(t − 1/2)(t − 1)dt = 0,
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so the computation of the divided difference need not be performed. Only the existence of this constant, not
its value, is needed.

The error term has an integrand off (4)(ξ) multiplied by four(x − xi ) factors. Our strategy calls for
replacingf (4)(ξ) by its worst value. Then, normalization produces gives a factor of(b−a)4 and the integral∫ 1

0

−1

24
(t − 0)(t − 1/2)

2(t − 1)dt = 1

2880

where the negative constant in the integrand has been inserted to correct for the function being everywhere
negative. The expression for the error given in the textbook differs by a factor of 32 because it is expressed
in terms ofh = (b− a)/2.

If the error term would be zero if a derivative appearing in it were constant, it is often
possible to extend the formula to allow a new main term that is identically zero with a higher
order error term.

Higher order Newton-Cotes rulesThis process can be continued by interpolating at more points. How-
ever, this has limited value for three reasons. First, the interpolating polynomials don’t always give better
approximations to the functions. Second, the error term involves a function with frequent changes of sign,
and the integral of its absolute value may be very much larger than the integral of the function itself, with
no easy way to take advantage of a tendency of thef (n+1)(ξ) factor not to be change very much. The third
reason is related to this — the expressions giving the coefficients of the function values are integrals of
functions with many changes of sign and there is no reason to expect that they will all be positive. Since
we really want the numerical method to average the function by averaging function values, this can lead to
surprising values. The changing of signs first appears when 9 equally spaced points are used to interpolate
a polynomial of degree 8.

Interpolation is a good idea, but not a great idea. Polynomials of high degree can
take unexpected turns that are not completely smoothed out by integrating. The low degree
approximations have better numerical properties because the error term involves expressions
that do not change sign, so they average the value of the derivative appearing in them. This
allows the error term to be expressed in terms of the value of the derivative somewhere in
the interval.

Exercise S8. Explore the use of the cubic Hermite interpolation to obtain an integration rule. TheHermite
polynomialsof degree 3 that multiplyf (a), f (b), f ′(a), and f ′(b) can be found in the proof of Theorem 3.9
of the text. Alternatively, the cubic interpolating polynomialP3(x) of degree 3 can be written as

P3(x) = P1(x)+ (x − a)(x − b)Q1(x),

whereP1(x) is the linear interpolation, andQ1(x) is another linear polynomial that can be characterized
by values ata andb. (a) Find an expression forP′3(x) and use it to expressQ1(a) and Q1(b) as divided
differences. (b) Evaluate ∫ b

a
P3(x)dx

either directly, or by using the results of (a), in terms off (a), f (b), f ′(a), and f ′(b). (c) Evaluate∫ 1

0
t2(t − 1)2 dt
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and apply it to give an expression for the error in using the result of (b) to approximate the average off (x)
on [a,b].

Composite rules. How can we get both the benefits of small steps between sample points and the nice
numerical properties of low degree approximations? The same way that we did it when we were using
interpolation to calculate function values! Each interpolation formula will be used on a small piece of
interval. That is, we build up the formula in two steps. First, we divide the interval froma to b into m small
intervals but some pointsui with u0 = a andum = b. This refinement will give ussmall intervals [ui−1,ui ]
on which to use our approximate formula.

We have indicated that we should organized the process in terms of computing an average rather than
an integral. Thus

avg[a,b]( f ) = 1

b− a

∫ b

a
f (x)dx

= 1

b− a

m∑
i=1

∫ ui

ui−1

f (x)dx

=
m∑

i=1

ui − ui−1

b− a

1

ui − ui−1

∫ ui

ui−1

f (x)dx

=
m∑

i=1

ui − ui−1

b− a
avg[ui−1,ui ]( f )

Thus, the average off betweena andb is the average of the averages on the [ui−1,ui ], weighted by their
lengths. If theui are equally spaced, this is the ordinary average of these smaller integrals.

Now, each [ui−1,ui ] may be further divided by some points to apply a simple integration rule (e.g.,
we can insert the midpoint of the interval in order to use Simpson’s rule). Traditionally, all the points at
which the function is sampled were given the same description even if they acquired different weights in the
formula. In this two-stage description, the strategy to be applied on the subintervals and the choice of the
subintervals are considered independent. One awkward effect is that the formulas then tend to be described
in terms of the choice of theui rather than in terms of thexj at which the function is to be sampled. We have
already seen that this gives a factor of 32 in the expression for the Simpson’s rule error term in Section 4.3
(although it turns into only a factor of 16 between our expression and the one in Section 4.4).

In computation, when you are usingf (ui ) as the contribution from the left endpoint of intervali + 1,
you want to remember the value that you computed when it was used as the contribution from the right
endpoint of intervali , since evaluation off is likely to be the most costly part of the evaluation. If the
whole process is to be expressed in a single formula, this requires collecting these terms. The resulting
composite trapezoidal rule treats endpoints different from the interior points, and Simpson’s rule continues
this distinction of endpoints while introducing a new classification of points of odd or even index. These
formulas are probably so familiar that this curious pattern is no longer mysterious. However, there may be
other ways to tell your program to remember not to calculate values twice, so this consequence of the use of
a single formula should not be made to seem important.

Description and analysis of integration formulas should use the two-stage process. Each
quantity appearing should be described in terms of its role in the calculation. In different
applications, one or the other part of the process may be fixed and only the other part needs to
be chosen to achieve required accuracy. The details of efficient computation may be designed
without including everything that needs to be considered in a single formula.
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