
Numerical Analysis Exam with Solutions
Richard T. Bumby

Fall 2000 June 13, 2001

You are expected to have books, notes and calculators available, but computers of telephones are not to be
used during the exam. You should check that you have a complete exam. There are 6 problems on 3 pages
(printed single sided). All work for this exam is to be done in the blue books provided. You may keep the
question paper.

1. (35 pts.) Let
g(x) = 0.1+ 0.6 ∗ cos(2x).

Investigate the possibility of solvingx = g(x) by iteratingg (as in Algorithm 2.2). If you find an interval
for which the hypotheses of theorems 2.2 and 2.3 are satisfied, use it to estimate the number of iterations
needed to get 10 decimal place accuracy for the fixed point. In any case, show that there is only one solution
of x = g(x). If convergence is uncertain (or slow), try a different rootfinding procedure. Describe your
chosen procedure and apply it to give 10 decimal place accuracy. Can you now find an interval satisfying
the hypotheses of theorems 2.2 and 2.3?

Solution

2. (35 pts.) Lety ≥ 1 be given as a function ofx ≥ 0 by

y3− y = x.

(The restriction onx andy guarantees that a unique root of the cubic is selected for all admissible values
of x). The inverse function theorem allows us to tabulate some values of this function and its derivative at
irregularly spaced values ofx (chosen to give nice values ofy). Here is such a table.

x y dy/dx
0.000 1.0 1/2.00
0.231 1.1 1/2.63
0.528 1.2 1/3.32
0.897 1.3 1/4.07
1.344 1.4 1/4.88
1.875 1.5 1/5.75
2.496 1.6 1/6.68
3.213 1.7 1/7.67

Use this to construct a divided difference table to give an appropriate interpolating polynomial of degree 2 for
approximating the value ofy whenx = 1. What value do you get fory? To test the accuracy, computey3− y
What does this say about the accuracy of the value ofy? Now, use values ofy anddy/dx at appropriate
values ofx to construct a divided difference table to give a Hermite cubic to approximate the value ofy
whenx = 2. Test the accuracy of this as before.

Solution
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3. (30 pts.) By using the Taylor series for cos(x), one can prove that

1− cosx

x2
= 1

2
− x2

24
+ x4

720
− x6

40320
cosξ

for someξ between 0 andx. For whichx will this formula compute the function accurately to within 10−10?
Apply the formula to evaluate the function atx = .1, x = .05, x = .01, x = .005 andx = .001 to the
accuracy of your calculator. Compare the answers to the value obtained by subtracting the value given by
thecos key on your calculator from 1 and dividing byx2. They should be (slightly) different. Explain the
difference.

Solution

4. (30 pts.) Here is a portion of a table of a function.

x y
0.3 1.531475
0.4 1.402252
0.5 1.284457
0.6 1.177036
0.7 1.079035

Approximate the derivative of this function at each of the given values ofx using the bestthree-point
numerical differentiation rule for each point.Show the formula being used as well as the answer.Also
use thefive-pointrule of equation (4.6) of the textbook to obtain what should be a much better estimate of the
derivative at 0.5. Assuming that this is a much better estimate, how small would you expect thetruncation
error to be if you used the three point formula based on values of the function withx increments of 0.01
instead of 0.1? If the function was still tabulated to 6 decimal places, what would theround-off error be?

Solution

5. (35 pts.) Devise a plan to find ∫ 2

1.5

ex

x
dx

to 8 decimal places. Begin with the simplest form of the trapezoidal rule and repeatedly half the step size
in thecompositetrapezoidal rule. Use this as a basis of aRomberg methodto develop higher order rules.
Even if the Romberg method does not yield a quick answer, it should allow you to estimate the number
of times you must halve the step size to get an acceptable answer with the composite trapezoidal rule and
with the composite Simpson’s rule. Give the step sizes needed for these rules. If excessive computation
would be required to give a suitable value of the integral, describe how the problem would be done on a
computer. (If your calculator has a built-in Simpson’s rule that you have used and you have determined that
it will give a suitable answer, use it and describe how you entered the data for this method and the answer
obtained. Otherwise, describe your choice of the best method for obtaining an answer and any programming
considerations.)

Solution
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6. (35 pts.) Consider the differential equation

dy

dt
= y

t
−
( y

t

)2

with y(1) = 1. Select asecond-order method(either a Taylor method or one of the three second-order
Runge-Kutta methods described on pages 279-280 of the textbook) and computetwo stepswith h = 0.1.
Then perform a single step of the fourth-order Runge-Kutta method with a step size ofh = 0.2. (Since the
solution of the equation is known, we have that the value ofy whent = 1.2 should be 1.01495231404. How
accurate are your results?) Outline a program for solving this equation for 1≤ t ≤ 2 to six decimal place
accuracy. Include a test that will check the accuracy of the answer that does not depend on having an exact
solution to the equation.

Solution

Solution of Problem 1

For iteration of
g(x) = 0.1+ 0.6 ∗ cos(2x)

to converge, we need
(a) An intervalI that is mapped into itself.
(b) A constantk < 1 such that

∣∣ f ′(x)
∣∣ ≤ k on I .

These conditions are easy to satisfy separately. For example, since

−1≤ cos(2x) ≤ 1

for all x, we have
−0.5≤ g(x) ≤ 0.7,

and sinceg(x) has a local maximum atx = 0,

0.2< g(0.7) ≤ g(g(x)) ≤ g(0) ≤ 0.7.

Also, g′(x) = −1.2 sin(2x), so (b) will be satisfied if

|x| ≤ 0.5 arcsin(1/1.2) ≈ 0.49255539.

However, none of the intervals mentioned so far satisfyboth conditions. We now attempt to merge the
conditions to find a suitable interval.

There is nothing to be gained by considering an interval that is not contained in[0.2, 0.7], since all
values ofg(g(x)) are in this interval. We first note thatg(x) is decreasing on this interval (by considering
the derivative). If the endpoints of such an intervalI are taken intoI by g, (a) will be satisfied, but (b)
requires that the right endpoint not be larger than 0.5 arcsin(1/1.2), so the left endpoint cannot be smaller
than the preimage of this value underg, which is approximately 0.4288. If this were not smaller than our
chosen right endpoint, we would have shown that no such intervalI could exist. As it is, any choice of the
interval I must be contained in the interval that we have just determined. We need a little more since we
need to find ak < 1 that bounds

∣∣g′(x)
∣∣. If we arbitrarily takex0 = 0.45, we find thatg(x0) < 0.473= x1
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andg(x1) > x0, so we can takeI = [x0, x1]. Finally,
∣∣g′(x)

∣∣ is increasing on this interval, so we can take

k =
∣∣g′(x1)

∣∣, which is slightly less than 0.9733, and we find that(0.9733)n < 10−1 for n ≥ 85, so that 85
iterations will give one new decimal place of accuracy.

With patience, this will find the fixed point, but it is too slow. Only 30 bisection steps would be needed
to find wheref (x) = x− g(x) is zero, starting from the intervalI just constructed (the construction shows
that f changes sign ofI ). Since the derivative off is easily determined, we could use Newton’s method to
find where f (x) = 0. Alternatively, the iteration ofg could be accelerated by Steffensen’s method. Both of
these are quadratically convergent, but we can get off to a good start by starting the iteration atx0 = 0.45.

The p(i )0 for Steffensen’s method are

0.45

0.461736559735

0.461785307032

0.461785307873

and for Newton’s method, the values are

0.45

0.461838181555

0.461785308906

0.461785307873

and the last value listed is seen to be a fixed point ofg, and hence a zero off to the full calculator accuracy
of 12 decimal places. When we know the fixed pointx∞, thek for iteration ofg on a small interval around
x∞ will only be slightly larger than

∣∣g′(x∞)
∣∣, so only about 53 iterations are needed to get one new decimal

place of accuracy.
Note the convention of usingf to denote a function whose zero is to be found, andg a function

whose fixed point is to be found. The two problems are equivalent, but one must modify the function when
going from one formulation to the other. Also, a calculator must be set in radian mode to calculate the
mathematically recognized trigonometric functions.

A small change in the definition of the functiong can give a function for which iteration does not
converge. For example, for

g2(x) = 0.2+ 0.6 ∗ cos(2x)

iteration will lead to a cycle that alternates between 0.35176928145 and .65753469269. Other methods will
locate the unique fixed point at 0.511986175381.

Solution of Problem 2

Divided differences give the easiest determination of interpolating polynomials. One records the given
data at the left side of a table and computes new columns as differences of consecutive elements in the
previous column divided by an appropriate difference in the argument. For example,f [a,b, c] = ( f [b, c]−
f [a,b])/(c−a). To evaluate the interpolating polynomial at a new argument, one usesnested multiplication
(a more general form of Horner’s method that appears in Theorem 2.18). An easy way to do the calculation
is to write the new argumentx on a new line of the divided difference table, which leads to a new diagonal
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of divided differences. To find these, copy the rightmost element and fill in the remaining values from right
to left. When you are done, you will have the value of the interpolating polynomial atx. A typical step is
given by rewriting the divided difference equation as, for example,f [c, x] = f [b, c] + (x − b) f [b, c, x].
Although it is common to arrange the arguments in increasing order when working with divided differences,
this is not necessary. Indeed, the value of a divided difference is independent of the order of its arguments.
However, when there are repeated arguments, the equal arguments should be kept together to allow the
derivatives of the function to be inserted near the beginning (i.e, the left side) of the table. Otherwise, it
would be necessary to identify the derivative of a divided difference whenever the ends of a span of argument
belong to equal arguments.

Although a large table was given, only a small number of points near the desired value ofx are used
in the computation. Three points are used to get a quadratic polynomial. For example, to approximate
f (1), we can use 0.528, 0.897, and 1.344. Here is the table with both the divided differences and the nested
multiplications.

x y yy yyy

0.528 1.2
1/3.69

0.897 1.3 -0.0579422836943
1/4.47

1.344 1.4 -0.0579422836943
0.217744561311

1 1.32509587091

In this table, thex andy values in the upper part of the table are known exactly, and exact expressions used
in the yy column of first divided differences. For this table, I used a form of the expression that used these
exact expressions; when I allowed the calculator to use its (rounded) version of the first divided differences
before subtracting, the value calculated as the second divided difference differed in the last decimal place
shown, but this had no effect on the later steps of the calculation.

To test this, we computey3 − y − 1 ≈ 0.0016, which measures how close we came to solving the
equation. To turn this into an estimate on the error in calculatingy, we note thatdx/dy = 3y2 − 1, which
is approximately 4.27 wheny ≈ 1.325. Dividing the error inx by dx/dy gives an estimate on the error in
y of less than 4× 10−4.

In principle, one could use the standard error term in Theorem 3.3 to bound the error. However, the
function givingy in terms ofx is defined as an inverse function. First derivatives of inverse functions have
nice expressions, but the higher derivatives become cumbersome. In this example, we have

dy

dx
= (3y2− 1)−1

d2y

dx2
= −(3y2− 1)−2 · d

dx
(3y2− 1)

= −(3y2− 1)−2(6y)
dy

dx

= −(3y2− 1)−2(6y)(3y2− 1)−1

= −(3y2− 1)−3(6y)

which must be differentiated in a similar way to obtain the third derivative. Since an accurate estimate of
the resulting expression may not be worth the effort, this approach may fail to recognize the accuracy that
has been demonstrated by other means.
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One thing that we do get from the error term in Theorem 3.3 is that the error is essentially the product
of a fixed quantity with the cube of the step size used in forming the table. (This takes a little work, since it is
differences in values ofx that appears in the theorem, and we want to measure things in terms of differences
in values ofy. However, the ratio of these is approximated by the derivative near the point where the function
is evaluated, and this is a quantity that is essentially fixed.) Repeating this with a step size of.01 in y could
be expect to reduce the error by a factor of 1000 to 4× 10−7.

If the points were not chosen close to intended value the factor

(x − x0)(x − x1)(x − x2)

in the error term will no longer be a product of three small numbers, which is the feature of the error term
that shows that interpolation can provide a good approximation, and that it gets significantly better with a
smaller step size.

The second part of the question calls for using a Hermite cubic interpolation in a different part of
the table. The analysis is the same, so we only present the divided difference table and computation of the
function. Hermite interpolation allows us to use only the values that immediately surround the desired value,
with each used twice.

x y yy yyy yyyy

1.875 1.5
1/5.75

1.875 1.5 -0.0207446822304
1/6.21 0.00402563693768

2.496 1.6 -0.0182447616921
1/6.68 0.00402563693768

2.496 1.6 -0.0177415570749
0.158500411111

2 1.52138379609

For y = 1.52138379609, we findy3− y− 2= 0.00002430592, and combining this with a value ofdy/dx
of approximately 5.95 at this value ofy, we find that the error iny is slightly more than 4× 10−6. This is
a fourth order approximation, so a table based on a step size of 0.01 iny would lead to an error of about
4× 10−10.

Solution of Problem 3

In the given expression, the termx6 cosξ/40320 represents the error when the function on the left is
approximated by the polynomial consisting of the first three terms on the right. Since|cosξ | ≤ 1, this error
term is bounded by

∣∣x6/40320
∣∣ for all x. This is less than 10−10 for |x| < 0.12615953722. Thus, for allx

at which we were asked to consider, the polynomial will be represent the function to 10 decimal places. In
addition, there will be no cancellation of the terms of the polynomial in this range, so roundoff is entirely
determined by the register size of the calculator, which is more than 10 places on current calculators. Thus,
any larger difference from the value given by direct calculator evaluation of the expression on the left can
only be due to the calculator being unable to evaluate that expression accurately. Here are the requested
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values, and a few more, as obtained on a Hewlett-Packard 48G.

x polynomial expression
0.1 0.499583472222 0.4995834722
0.05 0.499895842014 0.499895842
0.01 0.499995833347 0.49999893
0.005 0.499998958334 0.49999896
0.001 0.499999958334 0.5
0.0001 0.499999999584 0.5
0.00001 0.499999999996 0.5
0.000005 0.499999999999 0.48
0.000003 0.5 0.444444444444
0.000002 0.5 0.5
0.000001 0.5 0

Looking first at the polynomial, we see that the value is given to 12 decimal places untilx is so small (i.e.,
3× 10−6) that all but the constant term of the series is negligible. However, the direct evaluation of the
expression is shown to diminished precision from the very beginning, and the difference already exceeds
10−10 for x = 0.01. Forx between 10−3 and 10−5, the formula gives the limiting value, although we know
that the function is noticeably smaller. After a brief interval of erratic values, the formula then gives 0,
which isverywrong. The explanation lies in the roundoff error in the computation of the expression. The
calculator has a fixed register size, and everything computed, including intermediate steps must fit in that
register. The expression requires the value of cosx for smallx, which is very close to 1. Since only a dozen
decimal places can be stored, the stored value becomes essentially 1− x2/2 whenx is smaller than 10−3

and indistinguishable from 1 whenx is less than 10−6. Moreover, only a fixed number of decimal places
will be accurate, so thefloating pointrepresentation of 1− cosx is padded in the interval where it should
differ only slightly fromx2/2, leading to erratic behavior. Even for values at the beginning of the table, the
padding makes the computed value at these values ofx appear to be exactly a number with fewer than 12
decimal places.

When you press thecos key on your calculator, what you get is onlyapproximatelythe cosine of the
number in the display. The approximation is likely to resemble the Taylor series expansion for smallx, but
it may be modified by some of the methods discussed in Chapter 8 of the textbook. This is good enough for
normal applications, but this exercise was designed to expose the limitations of these approximations.

Solution of Problem 4

The three-point numerical differentiation formulas are:
(A) f ′(x0) ≈

(−3 f (x0)+ 4 f (x0+ h)− f (x0− 2h)
) / (

2h
)

(B) f ′(x0) ≈
(

f (x0 + h)− f (x0− h)
) / (

2h
)

These are specializations of equation (4.3) of the textbook, which also includes an error estimate. The
error for formula (B) appears to be half that of formula (A), so it is preferred when both formulas applied.
Thus, in this exercise, formula (A) is used only forf ′(0.3) (with h = +0.1) and f ′(0.7) (with h = −0.1).
For the remaining values, formula (B) is used (withh = +0.1, althoughh = −0.1 gives exactly the same
results). Since we are staring with only six decimal place values, and are dividing by 0.2, the results will
have only five decimal places.
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Here are the results:
x dydx

0.3 −1.34937
0.4 −1.23509
0.5 −1.12608
0.6 −1.02711
0.7 −0.93291

There is also a five-point formula:
(C) f ′(x0) ≈

(
f (x0 − 2h)− 8 f (x0− h)+ 8 f (x0+ h)− f (x0+ 2h)

) / (
12h

)

This applies only to findingf ′(0.5), and the result (rounded to five decimal places) is−1.12441. This
has a fourth order error term, while formulas (A) and (B) have second order error terms. The instructions
in the exercise say to make the reasonable assumption (since the function seems to be well behaved) that
formula (C) gives a much better estimate. That is, that the difference between the two estimates is very close
to the error in the three-point formula. This estimates the truncation error in the three-point formula to be
about 1.7× 10−3 whenh = 0.1. Since this has a second-order error term, dividing the step by 10 should
divide the error by 100, giving an estimate of 1.7× 10−5 in the center of the range.

Roundoff error is a different story. The numerator of the formula is only accurate to 10−6 because the
tabulated values were only given to this accuracy. Dividing by 2h gives an error of 5× 10−6 whenh = 0.1,
but 5× 10−5 whenh = 0.01. In particular, the roundoff error may be larger than the truncation error at this
step size.

Another approach to estimating the error is to use the fact that four-point divided differences of a function
f also provide an estimate onf ′′′(x)/6 in the interval. From the given table, these divided differences are
−0.176 and−0.159. This is only slightly more cautious than our previous estimate.

Solution of Problem 5

Computingaveragesrather than integrals organizes the computation in a way the guards against blun-
ders. When the average has been found, it is multiplied by the length of the interval to get the integral. That
approach will be taken, so the tabulated values will be averages and the integral is found by multiplying by
0.5. The same factor is used to convert any approximate average to the corresponding approximate integral,
if desired.

The integrand is seen to fairlysmooth. That is, repeated differentiation, while possibly symbolically
troublesome, only leads to linear combinations ofex/xk with small coefficients. This makes the problem
an ideal candidate for the Romberg method since the observed differences in the estimates will accurately
reflect the theoretical truncation error. Roundoff error is bounded by the number of points in the partition
times the roundoff error in a single function evaluation. This function can be evaluated to full calculator
accuracy (12 decimal places on my calculator), so several thousand points can be used without affecting the
requested 8 place accuracy.

Function evaluations enter the Romberg method only in the trapezoidal approximation on the whole
interval and composite midpoint rules for each division into 2n parts forn = 0,1, 2, . . . . The trapezoidal
average forn = k+1 is the average of the midpoint and trapezoidal averages forn = k. When two successive
trapezoidal averageTk andTk+1 have been found, a fourth order estimate at levelk+ 1 is obtained as

Tk+1+
Tk+1− Tk

3
.
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Successive fourth order estimates are combined in a similar way, using a denominator of 15 instead of 3,
to obtain a sixth order estimate. In general, an estimate of order 2j is extrapolated with a denominator of
22 j − 1 to obtain an estimate of order 2( j + 1). We record all computations here, usingf (x) to name the
integrandex/x.

Trap= f (1.5)+ f (2)

2
= 3.34116038151

Midpt = f (1.75)

= 3.28834438629 level 0

Trap= 3.34116038151+ 3.28834438629

2
= 3.31475238390

Ord4= 3.31475238390+ 3.31475238390− 3.34116038151

3
= 3.30594971803

Midpt = f (1.625)+ f (1.875)

2
= 3.30147557174 level 1

Trap= 3.31475238390+ 3.30147557174

2
= 3.30811397782

Ord4= 3.30811397782+ 3.30811397782− 3.31475238390

3
= 3.30590117579

Ord6= 3.30590117579+ 3.30590117579− 3.30594971803

15
= 3.30589793964

Midpt = f (1.5625)+ f (1.6875)+ f (1.8125)+ f (1.9375)

4
= 3.30479004998 level 2
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Trap= 3.30811397782+ 3.30479004998

2
= 3.30645201390

Ord4= 3.30645201390+ 3.30645201390− 3.30590117579

3
= 3.30589802593

Ord6= 3.30589802593+ 3.30589802593− 3.30589793964

15
= 3.30589781594

Ord8= 3.30589781594+ 3.30589781594− 3.30589793964

63
= 3.30589781398

Midpt = average of 8 values level 3

= 3.30562073362

level 4

Trap= 3.30645201390+ 3.30562073362

2
= 3.30603637376

Ord4= 3.30645201390+ 3.30603637376− 3.30645201390

3
= 3.30589782705

Ord6= 3.30589782705+ 3.30589782705− 3.30589802593

15
= 3.30589781379

Ord8= 3.30589781379+ 3.30589781379− 3.30589781594

63
= 3.30589781376

Ord10= 3.30589781376+ 3.30589781376− 3.30589781398

127
= 3.30589781376 level 4
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Note that the value of the function at only 17 points in the interval were needed before extrapolation
failed to show any change in the value. If further levels were computed, there would be no change in the
methods of order 8 or higher. Lower order methods would continue their march to the limit of 3.30589781376
for the average, which gives an integral of 1.65294890688. Since this function is so gently varying, the
fourth-order method (which is equivalent to Simpson’s rule) can be seen to reach 8 place accuracy in one or
two more halvings of the step size, since the error is divided by 16 each time this is done. This is well within
the ability of the built-in Simpson’s rule on most calculators. The best trapezoidal estimate obtained in our
table only differs from its extrapolation by about 1.4× 10−4, so seven more halvings of the step size would
be needed to reduce this to 10−8, since this error is only divided by 4 by this action. Over 1000 terms must
be found and combined, so the roundoff error could cause as many as three decimal places of the computed
accuracy to be lost. A 12 decimal place calculator would not be able to guarantee the required accuracy.

Solution of Problem 6

Second-order methods that were discussed in the course are: (1) the Taylor method; (2) the modi-
fied Euler method; (3) the midpoint method. Methods 2 and 3 are Runge-Kutta methods reducing to the
trapezoidal and midpoint rules, respectively, for approximating integrals when the right side of the equation
depends only ont . A fourth method, Huen’s method, was mentioned in the textbook, but not discussed in
class, so we will show only the results of the first three methods. Since our goal in this problem is 6 place
accuracy, results will be shown only to that precision.

First, the Taylor method. The function on the right side of the equation is

dy

dt
= f (t, y) = y

t
−
( y

t

)2
.

Thus,
d2y

dt2
= d

dt
f (t, y) =

(
1− 2

y

t

)
· d

dt

( y

t

)

=
(
1− 2

y

t

)
·
(

1

t

dy

dt
− y

t2

)

=
(
1− 2

y

t

)
·
(

1

t
·
(

y

t
−
( y

t

)2
)
− y

t2

)

= − y2

t3
·
(
1− 2

y

t

)

In the Taylor method,

y(t + h) = y(t)+ y′(t)h+ y′′(t)
2

h2

= y(t)+ h

(
y′(t)+ y′′(t)

2
h

)

In this problemh = 0.1. A table summarizing the computation of two steps is:

t y y/t dy/dt d2/dt2 y′(t)+ y′′(t)h/2
1.0 1.0 1.0 0.0 1.0 0.05
1.1 1.005 0.913636 0.078905 0.627773 0.110294
1.2 1.016029
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Only two entries are made on the third line since those entries are thet and y coordinates of the goal.
Comparing with the known solution of 1.014952 shows that the error att = 1.2 is about 1.1× 10−3.

In the midpoint method, the tangent at(ti , yi ) is followed untilt = ti +h/2 and the tangent at that point
is used to give the direction of the chord from(ti , yi ) to (ti+1, yi+1). We denote the slope of the tangent by
m1 and the slope of the chord bym2 (the usual notation for Runge-Kutta methods would usekj = h ·mj ).
Here is a summary of that computation.

t y y/t m1 = dy/dt t(1) = t + h/2 y(1) = y+ hm1/2 y(1)/t (1) m2
1.0 1.0 1.0 0.0 1.05 1.0 0.952381 0.045351
1.1 1.004535 0.913214 0.079254 1.15 1.008498 0.876955 0.107905
1.2 1.015326

Comparing with the known solution shows that the error att = 1.2 is about 3.7× 10−4.
The modified Euler method also hasm1 = dy/dt, but it follows the line of this slope tot = ti + h, and

definesm2 to be the slope of the tangent at this point. These are averaged to get them that is used for the
official step. Here is a summary of that computation.

t y y/t m1 = dy/dt t(1) = t + h y(1) = y+ hm1 y(1)/t (1) m2 m
1.0 1.0 1.0 0.0 1.1 1.0 0.909091 0.082645 0.041322
1.1 1.004132 0.912847 0.079557 1.2 1.012088 0.843407 0.132072 0.105814
1.2 1.014714

Comparing with the known solution shows that the error att = 1.2 is about 2.4× 10−4.
In this case, the modified Euler method is accurate enough that a step size of 0.005 would be small

enough to give the required accuracy on the given interval. This would use 40 steps, each with two function
evaluations. Without further checking, however, one could not be sure that this level of accuracy would
persist as far ast = 2.

For the fourth order Runge-Kutta method, there are four slope calculations givingm1, m2, m3 andm4
which are combined to give the official slopem= (m1+ 2m2+ 2m3+m4)/6. These steps will be written
on separate lines for clarity with the average written at the end. The values oft andy for these lines are based
on the values on the first line of the block. Only one step of this method has been requested, so there will be
a single block followed by the base point for the next interval. Here is a summary of that computation.

step t y y/t m= dy/dt
BASE 1.0 1.0
1: 1.0 1.0 1.0 0.0
2: 1.1 1.0 0.909091 0.082645
3: 1.1 1.008264 0.916604 0.076441
4: 1.2 1.015288 0.846074 0.130233
AVG 0.074734
BASE 1.2 1.014947

Now the error is seen to be only about 5.5−6, so that a calculation using this method with a step size of 0.1
would more than meet the requested standard of accuracy on this interval since halving the step size can be
expected to reduce the error by a factor of 16 in a fourth order method.

One way to get the required accuracy using only comparison of numerical results is to start with some-
thing that can be done fairly quickly, but is likely to be moderately accurate. For example, the fourth order
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Runge-Kutta method with a step size of 0.2. Save the values obtained fory at t = 1.0, 1.2,1.4, 1.6,1.8, 2.0.
Then repeat the calculation with a step size of 0.1. It takes ten steps to cover the interval this time, but we
get new values ofy at a collection of values oft including all those that we have saved from the previous
computation. Since this is a fourth order method, the difference between these values at the same choice of
t should be about 15 times the error of the computation with the finer mesh. Use the largest of these errors
as an estimate of error associated with a step size of 0.1. Multiply this by 106 and take the fourth root. The
next largest integer is the number of pieces our step should be divided into to get the required accuracy. A
cautious approach would use two calculations with different step sizes and compare them. The calculations
should be performed to sufficient accuracy that the product of number of steps with the size of the roundoff
in each step remains less than 10−6.
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