Primitive Roots modulo p^n

Prof. Weibel
Math 356:01 (Fall 2009)
Thursday, November 16, 2009

If $p \sim 10^{100}$ then the fraction of primitive roots mod p is $\phi(p-1)/(p-1)$, which is at least $1/2$. So randomly picking 10 numbers under p, one is almost certain to be a primitive root modulo p. Unless you are Schrödinger ...

If r is a primitive root mod p, there are p numbers in \mathbb{Z}/p^2 which are $\equiv r \pmod{p}$. If we pick one at random, the odds that it is not a primitive root modulo p^2 are only 1 in p. So if $p \sim 10^{100}$ you can be pretty sure any lift you pick will work.

Theorem. Let p be an odd prime and r a primitive root mod p. Then all but one of the numbers $r + ap$ ($a = 0, 1, ..., p-1$) are primitive roots mod p^2.

Example. 2 is a primitive root modulo 5, so 4/5 of the numbers r are primitive roots modulo 25. In fact, 7 isn’t a primitive root: $7^2 \equiv -1$ and $7^4 = 2401 \equiv 1 \pmod{25}$.

Proof. Write $x = r + ap$. Since $x^i \equiv r^i \pmod{p}$, the order of x mod p^2 is divisible by the order of r modulo p, i.e., $p-1$. Since every y satisfies $y^{p(p-1)} \equiv 1 \pmod{p^2}$, x is a primitive root if and only if $x^{p-1} \not\equiv 1 \pmod{p^2}$. Now $r^{p-1} \equiv 1 \pmod{p}$, say $r^{p-1} = 1 + bp \pmod{p^2}$ for some b (which is unique modulo p). We compute:

$$x^{p-1} = r^{p-1} + (p-1)x^{p-2}(ap) + \left(\frac{p-1}{2}\right)x^{p-3}b^2p^2 + \ldots + b^{p-1}p^{p-1}$$

and all but the first two terms are divisible by p^2. Thus $x^{p-1} \equiv 1 + [b - ax^{p-2}]p \pmod{p^2}$. So $x^{p-1} \equiv 1$ exactly when $a = bx^{(p-2)}$. There is just one choice of a (and hence of $x = r + ap$) for which this holds. □

Theorem. Let p be an odd prime. If r is a primitive root modulo p^2 then r is a primitive root modulo p^n for all $n \geq 2$.

Proof. We show by induction on n that r is a primitive root modulo p^n, the base case $n = 2$ being the hypothesis. So assume that r is a primitive root modulo p^{n-1}. Set $e = \phi(p^{n-1}) = p^{n-2}(p-1)$, and note that $e/p = \phi(p^{n-2})$, $pe = \phi(p^n)$.

Since $r^i \not\equiv 1 \pmod{p^{n-1}}$ unless e divides i, the order of r is divisible by e. Since $y^{pe} \equiv 1 \pmod{p^n}$ by Euler’s Theorem, the order of r divides pe. Thus r is a primitive root modulo p^n if and only if $r^e \not\equiv 1 \pmod{p^n}$.

The inductive hypothesis that r is a primitive root modulo p^{n-1} is equivalent to $r^{e/p} \not\equiv 1 \pmod{p^{n-1}}$. On the other hand, since $e/p = \phi(p^{n-2})$ we know that $r^{e/p} \equiv 1 \pmod{p^{n-2}}$. Thus we can write $r^{e/p} = 1 + ap^{n-2}$ for some $a \not\equiv 0 \pmod{p}$.

We may now compute:

$$r^e = (r^{e/p})^p = (1 + ap^{n-2})^p = 1 + ap^{n-1} + \left(\frac{p}{2}\right)a^2p^{2(n-1)} + \ldots \equiv 1 + ap^{n-1}.$$

Thus $r^e \not\equiv 1$ modulo p^n, and r is a primitive root mod p^n. But induction, r is a primitive root modulo p^n for all $n \geq 2$. □