
Chapter 2

Population Genetics Models

2.1 Introduction

This chapter is an introduction to elementary mathematical models of pop-
ulation genetics, the most mathematical of the traditional disciplines of biol-
ogy. The central object of study is a population of inter-breeding individuals
of the same species, considered as it evolves in time. It is a fundamental
empirical fact that individuals belonging to natural populations vary in their
many different phenotypic (that is, observable) traits—size and shape, ex-
ternal markings, fecundity, disease resistance, blood type, etc.; everyday ex-
perience with the diversity of individuals in human populations will provide
you with a ready example. The inherited component of an individual’s traits
depends on its genotype, which, as defined in chapter 1, is the specification
of the alleles it carries at gene loci. The phenotypic variation in a population
reflects variation in its genotypes. Population genetics is concerned mainly
with genotypic variation. It applies what is known about the mechanism
of heredity—Mendel’s laws, the molecular basis of heredity—to understand-
ing how genetic variation varies in time, as one generation succeeds another,
under the influence of selection, mutation, and the randomness inherent in
mating.

A population genetics study will typically focus on only a small number
of genetically based traits, for example, eye color in humans, or color and tex-
ture of seeds, as in Mendel’s pea experiment. Thus, if you were to participate
in a genetic study of eye color, all other distinctive features that characterize
you—your good looks, superior intelligence, and athletic prowess—would be
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ignored and you would be entered into the data set only as an eye color (and,
probably, a sex, as inheritance of many traits is sex-linked). The underlying
model would classify individuals only by their genotype at the alleles influ-
encing eye color. Thus in population genetics models, individuals are not
considered in their concrete entirety, but rather, are identified with the list
of their alleles at the small number of loci under consideration.

The basic quantities of interest in population genetics are genotype and
allele frequencies. The frequency of a genotype in a population is simply the
total number of individuals with the genotype divided by the population size.
Because we can recover the number of each genotype from its frequency and
the population size, the collection of genotype frequencies characterizes the
genotype population. The degree of genotypic variability is revealed in the
distribution of genotype frequencies. If the frequency of one genotype is close
to 1 and the frequencies of all others are small, there is not much variation.
By contrast, in highly variable populations the different genotypes tend to
have about equal frequencies.

At the quantitative level, population genetics seeks to explain the geno-
type frequencies observed in nature and to understand the mechansims by
which they arise and are maintained. This study requires model building
and analysis, and it is here that mathematics, and, especially, probability,
enter. There is a random component to the matings and to the survival of the
consequent offspring that produce the genotypes of successive generations.
The modeller makes assumptions about how genes are passed down over the
generations and translates them into precise mathematical rules. Then the
implications of these rules are analyzed and compared to data.

In this chapter, we introduce and analyze very basic models of population
genetics. To build models, a number of questions need to be addresed. What
type of random mixing of genotypes do we postulate in a mating population.
How is the influence of selection and mutation to be modelled? How do
generational and age structures affect evolution of inheritance? Section 2
of this chapter discusses these issues as a preliminary to model formulation,
which is done in section 3. Once a model is built, we need to analyze it. What
does it predict about the nature and evolution of genotype frequencies? How
does it help understand actual populations? These questions are taken up in
the last sections of the chapter.

As you read, you will of course be trying to master the models and the
probabilistic reasoning behind their formulations. But, it is just as impor-
tant to pay attention to the modelling process itself. Elementary population
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genetics provides an excellent example of the art of mathematical modelling.
First one begins with extremely oversimplified models; nevertheless, they are
easy to analyze and lead already to interesting conclusions, in particular,
the Hardy-Weinberg equilibrium concept. Then, one explores what happens
as the simplifications are removed, one at time. Do the conclusions of the
simplest model continue to hold, at least in modified form? Or do very differ-
ent behaviors arise? This process—building simplified models, testing their
behavior and sensitivity to assumptions, modifying them—is a paradigm for
mathematical modelling. There is a tension in modelling between precision
in the assumptions, so that they account for possible subtle effects, and ab-
straction and simplification. The precise model will, it is hoped, be more
accurate, but it will also be more complicated, so much so that it cannot be
easily analyzed. In a simplified model, on the other hand, it will be easier
to understand the consequences of each assumption. If the simplified model
accounts for the behavior of the natural system at least broadly, that is evi-
dence that it captures something of the essential mechanisms at work, even
if it is inaccurate in details. The simplified model can then serve as the basis
for refined models. We will do enough in this chapter so that you can see
how probabilistic principles are used to create models and how the models
are refined and analyzed. You will be given an opportunity to model and
develop refinements in many of the exercises, which you should do an integral
part of reading this chapter.

2.2 Modelling Issues

The principle considerations going into modelling are population size, how
one generation succeeds another, whether a population is divided into sexes
or not, the nature of randomness in mating, and the number of loci and
alleles under consideration.

Sex. (And you never thought you’d see this word in a math course!)
Organisms in which sexual reproduction occurs are either monecious or
dioecious. Monecious (literally, in one house) means that each mature
individual houses both male and female sex organs; plants with flowers that
both contain an ovum and produce pollen provide a common example. In
dioecious (in two houses) organisms, such as humans, individuals are either
male or female, but not both. In a population of monecious organisms,
any individual can mate with any other or even with itself (selfing, or self
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fertilization), whereas with dioecious organisms, mating occurs only between
males and females.

Genetic mechanisms of sex determination in dioecious species vary widely,
and in general complicate analysis of inheritance. In most mammals, sex is
determined by X and Y chromosomes. A pair of X chromosomes and no
Y chromosome produces a female. A single X and a single Y determine a
male. Although the X and Y act as a pair in meiosis in males, the X and
Y are not copies of each other. Thus the male will only contain a single
copy of the allele of any gene on the X or Y chromosome, and its genotype
for such genes with therefore consist only of a single allele. The remaining
chromosomes, those not involved in sex determination, are called autosomal
chromosomes and are all paired in the standard manner in both males and
females. Other animals have similar sex-linked chromosomes, but the details
differ. Consequently, it is important to differentiate between dioecious and
monecious in setting up the basic models, and, for the dioecious case, between
loci on autosomal and on sex chromosomes. We will see that for autosomal
chromosomes, the ultimate consequences of random mating are much the
same and so the distinction does not ultimately matter. But analysis of
sex-linked genes has special features.

Genotypes, genotype frequencies, and allele frequencies. We will
classify models by the number of loci being studied and the number of alleles
at each locus. The simplest case is that of one locus with two alleles. In this
situation, the two alleles shall be denoted by A and a, and the genotypes
are AA, Aa, and aa. For the purposes of population genetics models, it will
be useful to think of the population as a collection of boxes, one box per
individual, in each of which is placed the letters denoting the individual’s
genotype. Thus, in the one locus/two allele case, each box contains one of
the pairs of letters, AA, Aa, or aa. (If you want an even more concrete
visualization, imagine representing each A allele as a red marble and each
a allele as a blue marble, and think of the population as a collection of
boxes, each containing two marbles.) Next in order of simplicity is a one
locus/m allele model, where m > 2. In this case one might label the alleles
as A1, A2, . . . , Am; the population could then be modelled as a set of boxes,
each containing a pair of letters of the form AiAj, where 1 ≤ i, j ≤ m. The
most general case considers multiple loci with multiple alleles. Rather than
state general notation at this point, let us illustrate the two locus/two allele
case. Denote the alleles at locus 1 by A and a and those at locus 2 by B and b.
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Then the possible genotypes are the nine four letter strings, AABB, AAbb,
AABb, aaBB, aabb, aaBb, AaBB, Aabb, and AaBb; these are the labels
contained by the boxes representing the population. There is a complication
in these genotype listings if the loci are on the same chromosome, but for the
moment we defer further discussion.

There are two kinds of quantities we want to track in our model, genotype
frequencies and allele frequencies. Consider a genotype G in a population of
size N ; (G here stands for a string of letters denoting all the alleles occuring
at the loci under study.) Then the frequency of G is

fG
4
=

number of times G occurs in the population

N
. (2.1)

Recall from chapter 1 that a random sample of a population is a random draw
of one individual done in such a way that each individual is equally likely to
be chosen. We have the following simple, but important, equivalence:

fg = probability to draw G in a random sample from the population (2.2)

Let A be an allele of some gene. The allele frequency is defined to be

pA
4
=

number of times A occurs in all genotypes of population

total number of alleles in population
.

To clarify, think of the population in terms of boxes containing genotypes.
Count the number of letters in all the boxes. This is the total number of
alleles. Now count all occurences of A and divide by the total number of
letters, The ratio is pA.

Example 1. Consider the one locus/two allele case. Suppose there are 12
individuals, of whom 3 are AA, 5 are aa, and 4 are Aa. The frequency of
genotype AA is fAA = 1/12 = 0.25. Since each individual has two alleles, the
total number of alleles in the population is 24. Of these 10 are A’s. Thus,
pA = 10/24 = 5/12.

There are two probability interpretations of pA for an allele A. First,
suppose all the boxes of genotypes are emptied into one container; this just
contains all the alleles without regard to whom they belong, and so we call
this the allele pool. Since pA is just the frequency of A in the container, it is
also the probability of of drawing A in a random sample from the allele pool.

Consider next a different experiment. Go back to the population of geno-
types. First take a random sample from the population (choose an individual
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box at random). Next choose one of the alleles in the individual’s genotype
at random (randomly sample the contents of the chosen box). Call this ex-
periment the random choice of an allele from a randomly chosen individual.

Theorem 1 The allele frequency pA for allele A, that is the probability of
drawing A from the allele pool, is equal to the probability of drawing A in
making a random choice of allele from a randomly chosen individual.

This result is independent of the number of loci or alleles in the model.
We will prove this theorem in a moment. First it is useful to introduce

some notation, which we will use a lot in the one locus/two allele case, and
a useful relation. Let

K
4
= fAA, L

4
=

1

2
fAa, M

4
= faa (2.3)

When we are looking at a population evolving in t, we shall use the notation
K(t), L(t), and M(t) to describe the corresponding frequencies at time t.
Notice that K + 2L+M = 1, since the frequencies of all possible genotypes
must add to 1. The following identities hold:

pA = K + L and pa = L+M. (2.4)

To see this imagine a population of N individuals. Since each individual has
2 alleles, the size of the allele pool is 2N . How many A alleles are there?
There are NK individuals with genotype AA contributing a total of 2NK
alleles A, and there are N(2L) individuals with genotype Aa, contributing
2NL more A’s. Hence

pA =
2NK + 2NL

2N
= K + L.

The argument for pa is similar, or one can observe pa = 1− pA = K + 2L+
M − (K + L) = L+M .

To prove the theorem, we shall use conditional probabilities and the rule
of total probabilities—see I.4 in the Appendix. First, we give the proof in
the one locus/two allele case, as the notation is simpler. Let U denote the
event of drawing allele A in the experiment of first drawing and individual
at random and then choosing one of its alleles at random. Let V1 be the
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event that, in the first step, an AA is drawn, let V2 be the event that an
Aa is drawn, and finally let V3 be the event that an aa is drawn. Clearly,
P(U/V1) = 1, because if the individual AA is drawn, allele A must be drawn.
Similarly P(U/V3) = 0. However, if Aa is drawn, then a random sample
of A, a yields A with probability 0.5, so P(U/V2) = 0.5. Now, by (2.2),
P(V1) = K, P(V2) = 2L and P(V3) = M . Putting this all together, using the
rule of total probabilities and the relation in (2.4),

P(U) = P(U/V1)P(V1) + P(U/V2)P(V2) + P(U/V3)P(V3)

= 1 ·K + (0.5)2L+ 0 = K + L = pA,

which proves the claim,
The proof in the general case only requires more notation. Let the pos-

sible genotypes be labelled G1, G2, . . . , GK . Each Gi may stand for a string
of letters denoting a genotype at a set of loci. Let M be the total number
of letters required to represent the genotype. Let ni be the number of times
letter A appears in the genotype Gi—if we are dealing with diploid individu-
als, which will always be the assumption in these notes, ni will be either 0,1,
or 2. If there are N individuals in the population, the number of individuals
with genotype Gi is NfGi and the size of the allele pool is MN . Each Gi

contributes the numbe ni of alleles A′s so the frequency of allele A in the
allele pool is

pA =
1

MN

K∑
i=1

NfGini =
K∑
i=1

ni
M
fGi . (2.5)

Now consider the experiment of first drawing an individual and then
randomly drawing an allele. Then

P (outcome is A/ individual of type Gi is drawn) =
ni
M
,

since an individual with genotype Gi has ni alleles A out of a total of M
alleles. But,

P ( individual of type Gi is drawn) = fGi .

So by the rule of total probabilities,

P (outcome is A) =
K∑
i=1

P (outcome is A/type Gi is drawn) P (type Gi is drawn)

=
K∑
i=1

ni
M
fGi = pA.
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We next return to the two locus/two allele case. Remember that there are
9 genotypes, AABB, AAbb, AABb, aaBB, aabb, aaBb, AaBB, Aabb, and
AaBb. In the first eight cases, in which at least one locus is homozygous,
the haploid gametes will be the same whatever the arrangement of genes on
chromosomes. To illustrate, let `1 label the chromosome on which the locus
for A or a occurs, and let `2 label the chromosome on which the locus for B
or b occurs, and assume `1 and `2 are different. Consider an individual with
AABb genotype. Each of its gametes gets one copy of `1, which contains
only the A allele, and one copy of the `2 allele, which can contain either
the B or the b allele. Therefore, the possible genotypes of the gametes are
AB or Ab and these will be generated in equal numbers, on average. Now
suppose the two loci are on the same chromosome, `. Then, in the AABb
individual one copy of ` will have AB and the other will have Ab. Again,
its gametes will end up with one or the other of these copies, with equal
probability on average, and so again AB and Ab will be the possible gametic
genotypes. However, the possible gametes of the ninth genotype, the double
heterozygote AaBb, will differ depending on whether the loci are on the same
chromosome or not. If they are on two different chromosomes `1 and `2, then
each loci can segregate independently; the possible gametes are AB, aB,
Ab, and ab, all equally probable. However, suppose the two loci are on one
chromosome, `. Then there are two possibilites: i) copy 1 of ` contains AB
and copy 2 contains ab; or, ii) copy 1 of ` contains Ab and copy 2 contains
aB. If no recombination occurs, the gametes in case i) can only be AB or
ab, while the gametes in case ii) can only be Ab or aB. In each case, gametes
with the other two genotypes can only be created if recombination occurs;
see chapter 1. Recombination is modelled by a parameter r, which denotes
the probability of a recombination event that segregates the two loci `1 and
`2. It is assumed that r is the same in both cases (i) and case (ii). This
seems reasonable; it says that the alleles that do appear do not affect the
recombination rate. If recombination occurs in a meiosis of an AaBb parent,
the four resulting gametes will be AB, Ab, aB, and ab, in both cases i) and
ii). Therefore if r = 1, that is if recombination always occurs, four different
possible gametes will be produced with equal probabilities, just as if the loci
were on different chromosomes.

Exercise 1. We have just considered two situations: situation 1—the two loci
are on different chromosomes; and situation 2—the two loci are on the same
chromosome and r = 1. We have just pointed out the probability of each



2.2. MODELLING ISSUES 9

possible gamete type is the same, that is 0.25 in both situations. However,
there is still an important difference. What is it? Hint: consider the joint
distribution of the number of each gamete type in one meiotic event.

Exercise 2. Consider the case in which both loci are on the same chromosome,
and let r be the probability of recombination. Consider a population of
gametes produced by a parent population of double heterozygotes. Let p be
the probability that a randomly selected gamete has a type i) parent (i.e.,
one chromosome has AB, the other ab). Then q = 1 − p is the probability
that the parent is type ii) (one chromosome is Ab, the other aB). Find the
probability that a randomly selected gamete is AB.

Population size. In modelling, we will distinguish between two cases, fi-
nite populations and infinite populations. What does the infinite population
assumption mean? It does not mean literally an infinite collection of indi-
viduals. It refers instead to frequency limits, derived from the law of large
numbers, as the population size increases to infinitiy. To illustrate, suppose
we are building a population of red and blue marbles by the following ar-
tificial procedure. We let X1, X2, . . . be an infinite sequence of independent
Bernoulli random variables with P(Xi=1) = p for each i. If Xi is 0, we add
a red marble to the population, if Xi, we add a blue one. When the first N

marbles have been chosen, the frequency of blue marbles is
1

N

N∑
i=1

Xi. This is

a random variable—in fact, we know
∑N

1 Xi has the binomial distribution—
and can take on any of the values 0, 1/N, 2/N, . . . , (N − 1)/N, 1. However,

as N → ∞, the strong law of large numbers says that
1

N

N∑
i=1

Xi → p. Or,

invoking the weak law, for large N , the frequency of blue marbles is close to
p with high probability. The infinite population assumption in this context
means that we assume the frequency of blue marbles is identical to p. That
is, we assume the population is large enough that the difference between the
actual (random) frequency of blue marbles and p is negligeable

For population biology models, the infinite population assumption will be
applied to genotype frequencies rather than marbles. In a truly finite popula-
tion model, the genotype frequency will be random, of randomness inherent
in mating and srvival. In a large population, these frequencies will be close to
their average values. The infinite population assumption is an approximation
in which frequencies are replaced by probabilities. Specifically,
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The infinite population model means that the frequency of a genotype G
in the offspring of a parent population is set equal to the probability that a
genotype G is sired.

In a truly infinite population, it is not possible to define frequencies as
in (2.1), since the denominator would be infinity. Instead, we resort to the
probability definition: fG is the probability of drawing genotype G in a
random sampling of the population.

Non-overlapping generations. How mating occurs and how successive
generations interact are also important modelling considerations. The sim-
plest model assumes non-overlapping generations. We imagine a popu-
lation at time 0. This population mates and their offspring constitute the
next generation. The individuals of the parent population do not mate fur-
ther and no mating across generations takes place. This model is convenient
to describe mathematically because we just need to keep track of genotype
frequencies in successive generations. To keep in mind the no-overlap con-
straint, it is easiest conceptually to imagine that each generations is born,
grows to maturity, mates, and then dies, leaving the next generation. but
this is not necessary, if one keeps in mind that no mating occurs across gen-
erations. We will work mostly with the non-overlapping assumption, but will
consider briefly how to modify it.

Selection and mutation. Different genotypes might confer different levels
of fitness on individuals, affecting their ability to survive and reproduce. To
model this we introduce fitness coefficients. If G is a genotype, however
complicated, we let wG be the conditional probability,

wG
4
= P (an individual survives to reproduce | individual has genotype G) .

(2.6)
For example, in the one locus/two allele case, wAA would denote the fitness
coefficient of genotype AA.

Mutations can also occur. For an example there might be a mutation
introducing a completely new allele to the population. Or, it could happen
that one known allele mutates to another; for example, in a locus with two
alleles A and a, allele A might occasionally mutate to a and vice-versa. Such
mutations will be considered random events and modelled by probabilities,

Random mating. A mating model specifies what the probabilites are for
offspring to have the various genotypes, given the genotype structure of the
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parent populations. Notice that it is a probabilistic model. In most popula-
tions, there is an inescapable random component in who mates with whom,
You may think that your own choice of a mate is, or will be, far from ran-
dom! Though you would probably not rule out the influence of luck, your
choices are influenced by personal history, location, religion, class, and more.
However, it is not sensible to attempt a predictive theory of individual mate
choice, especially in order to understand an evolving population. Instead, the
biologist identifies and tries to explain observed statistical regularities—that
is probabilities.

Despite randomness being inherent to any population model, the term
random mating is used to denote a very specific model—somehow the sim-
plest one— which is in some sense the ”most random.” In a rough sense, ran-
dom mating refers to the situation in which all possible matings are equally
likely. To be more precise, consider a random selected individual I, and
consider I ′s mating pool. In the monoecious case this will be the whole pop-
ulation, while in the dioecious case it will be all members of the opposite sex.
The first supposition of random mating is that the probability I mates with
an individual of genotype G is equal the frequency of G in I’s mating pool.
This is equivalent to assuming I chooses a mate by random sampling from
its mating pool.

A further supposition of random mating is that each genotype mates in
proportion to its frequency. Equivalently, each individual has an equally
likely chance of mating and producing offspring. Finally, it is assumed that
when an organism mates, each of its gametes has an equally likely chance
of being passed to a child. Putting all the suppositions together, random
mating is equivalent to the following model.

The genotype of a a random offspring of a random mating can be viewed
as being produced by the following experiment. Pick a parent from the popula-
tion by random sampling, choose one of its gametes at random, and copy its
chromosomes. Return the parent to the population pool and repeat indepen-
dently to get the second set of chromosomes The two copies obtained combine
to make the chromosomes of the offspring.

Notice that the parents are not physically removed from the population,
after one mating event. They are returned to the mating pool—we do not
wish to deprive them of the pleasure of mating again.

Example 1 (continued) In example 1, what is the probability of producing
AA by random mating? In this case the contribution from each parent is
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obtained by the experiment of choosing a random allele from a randomly
selected parent. By Theorem 1, we know that the probability of selecting
allele A in one such experiment is pA = 5/12. Since the allele choices from the
first and second parents are independent, the probability that both contribute
A is (5/12)2.

2.3 One locus/two allele models

2.3.1 Basic allele probability update equations

A population genetics model is essentially a set of equations that specifies
how genotype and allele frequencies evolve in successive generations. This
section constructs models for the analysis of two alleles at one locus.

It is best to start with modelling assumptions that lead to the simplest
model equations. These are:

Random mating. (A.1)

Generations do not overlap. (A.2)

The population is monecious and self fertilization is allowed. (A.3)

No selection, mutation, or migration. (A.4)

The meaning of these assumptions was explained in the previous section, ex-
cept for the assumption of no migration. This just means that no individuals
of whatever genotype from another population can migrate to the one under
study.

The first goal is work out the mathematical consequences of assumptions
(A.1)–(A.4) for genotype frequencies. That is the purpose of this first subsec-
tion. The second subsection develops and analyzes a complete model under
the additional assumption of an infinite population. Further subsections
state the Wright-Fisher model for finite populations, and models in which
assumption (A.4) is modified to allow selection or mutation.

Because generations do not overlap, we can talk about generation t, where
t takes on the values 0 (for the starting population), 1, 2, etc. Then, as in
the previous section, K(t) shall denote the frequency of genotype AA, 2L(t)
the frequency of genotype Aa, and M(t) the frequency of aa in generation
t at sexual maturity. Similarly, pA(t) is the frequency of allele A, and
pa(t) = 1− pA(t) the frequency of allele a in generation t at sexual maturity.
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The proviso at sexual maturity means that the frequencies are those of the
mating population. It is added here to distinguish between the probabilities
with which the different genotypes are produced in mating and the frequency
of those which survive to mate. This distinction is necessary later to model
selection. But for the moment we are working under the assumption of no
selection (A.4). We interpret this to mean that the probabilities with which
generation t − 1 produces a given genotype is the same as the probability
that the genotype appears in generation t at sexual maturity. Recall from
(2.4), that

pA(t) = K(t) + L(t) and pa(t) = L(t) +M(t). (2.7)

Next, we derive the rules for how genotype and allele frequencies evolve
from generation to generation. Consider, for example, the probability that a
random mating in generation t produces an AA individual. Call this proba-
bility k(t+1). According to the definition of random mating, this genotype
is produced by two independent random draws, one for each parent. In each
draw, a parent is selected at random, and then one of its two alleles is drawn
at random. According to Theorem 1 of the previous section, the proba-
bility of choosing allele A in this way is simply the allele frequency pA(t).
Therefore, using independence, the probability to get A from both parents
is k(t+1) = p2

A(t). Similarly the probability to get aa, which we denote by
m(t+1) is, m(t+1) = p2

a(t). Finally, to be Aa, either an A somes from parent 1
and an a from parent 2, which has probability pA(t)pa(t), or an a comes from
parent 1 and an A from parent 2, which again has probability pA(t)pa(t);
thus, 2`(t), the probability to be born Aa, is 2pA(t)pa(t). To summarize:

k(t+1) = p2
A(t); 2`(t) = 2pA(t)pa(t); m(t+1) = p2

a(t). (2.8)

Notice that the probabilites of genotype production in generation t+1 depend
only on the allele frequencies in generation t. This is a general feature of
random mating.

2.3.2 The infinite population case and Hardy-Weinberg
equilibrium.

We now add the assumption:

The population is infinite. (A.5)
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As explained in the previous section, the infinite population assumption
means that we set the frequency of a genotype in generation t+ 1 equal
to the probability that it is produced by generation t. Mathematically, this
means, for example, that K(t) is set equal to k(t), where, as in the previ-
ous section, k(t) is the probability that AA results from a random mating.
Similarly L(t+1) = `(t+1) and M(t+1) = m(t+1) for t ≥ 0. The full math-
ematical expression of the model for the evolution of genotype frequencies
under assumptions (A.1)–(A.5) now follows from equation (2.8)

K(t+1) = p2
A(t) = (K(t) + L(t))2

L(t+1) = pA(t)pa(t) = (K(t) + L(t)) (L(t) +M(t)) (2.9)

M(t+1) = p2
a(t) = (L(t) +M(t))2

(
= (1− pA(t))2

)
Notice that this is a deterministic system of difference equations. Al-

though the model is based on simple probabilistic calculations, the infinite
population assumption means that the frequencies in successive generations
are deterministic.

Given an initial set of genotype frequencies K(0), 2L(0), and M(0), these
equations may be solved iteratively to obtain the frequencies for all future
generations. In fact, the solution is particularly simple. To derive it, we
use the fact expressed in (2.9) that genotype frequencies in generation t+1
depend only on allele frequencies in generation t. Thus we need only study the
evolution of allele frequencies. But a simple calculation (left to the reader)
gives

pA(t+1) = K(t+1)+L(t+1) = pA(t); pa(t+1) = L(t+1)+M(t+1) = pa(t)
(2.10)

(The second equality is of course a consequence of the first and pa(t) =
1−pA(t).) This has a very important consequence, which is a general feature
of infinite population, random mating. Allele frequencies do not change from
generation to generation:

pA(t) = pA(0) and pa(t) = pa(0) for all generations t ≥ 0. (2.11)

But then, substituting this result into (2.9), it follows that for all t ≥ 1,

K(t) = p2
A(0) = (K(0) + L(0))2

L(t) = pA(0)pa(0) = (K(0) + L(0)) (L(0) +M(0)) (2.12)

M(t) = p2
a(0) = (L(0) +M(0))2 = (1− pa(0))2.
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In other words, after the t = 0 generation mates, the genotype frequencies of
all future generations are fixed. Conclusion: In the absence of selection,
random mating maintains genetic variation in the infinite popula-
tion model. As this observation was first most clearly enunciated by Hardy
and Weinberg, it is standard to use the following terminology, motivated by
(2.12).

Definition: Allele frequencies K, 2L, and M , with K + 2L + M = 1, are
said to be in Hardy-Weinberg equilibrium if there exists a p, 0 ≤ p ≤ 1,
such that

K = p2, 2L = 2p(1− p), M = (1− p)2.

Using this definition, we summarize the analysis so far in the next theo-
rem, which is fundamental to population genetics.

Theorem 2 Hardy-Weinberg Theorem Assume (A.1)–(A.5). After the
t = 0 generation mates, the genotype frequencies for AA, Aa, and aa are in
Hardy-Weinberg equilibrium with p = pA(0) = K(0) + L(0). In particular,
the allele frequencies are constant from generation to generation.

Despite its simplicity, this is an extremely important result, and the
Hardy-Weinberg equilibrium is a fundamental concept in population genetics.
In a natural population, single locus genotype alleles not in Hardy-Weinberg
equilibrium indicate that one of the assumptions (A.1)–(A.5) does not hold.
If the population is large and isolated and random mating seems reasonable,
it is natural to expect selective pressure.

There is an easy test for Hardy-Weinberg equilibrium:

Exercise 3. Genotype frequencies K, 2L and M are in Hardy-Weinberg
equilibrium if and only if L2 = KM . (Remember, K + 2L+M = 1.)

2.3.3 The finite population Wright-Fisher Model.

In this section, it is assumed that assumptions (A.1)–(A.4) hold but that the
population is a fixed, finite and of constant size N for all generations. The
frequency of allele A in the population can take on any one of the values
0, 1/(2N), 2/(2N), . . . , (2N − 1)/(2N), 1. Let X(t) be the frequency of allele
A in generation t; previously, this was called this pA(t), but the notation X(t)
will now be used to emphasize that for finite populations, the allele frequency
will be a random variable. The total number of A alleles in generation t
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is thus NX(t). The Wright-Fisher model prescribes rules for determining
how the probability mass function of X(t) evolves. Imagine going through
the population at time t+1 one individual at a time The random mating
model says that the each allele in an individual is A with probability A and
a with probability pa(t) = 1 − pA(t). The Wright-Fisher model adds one
more assumption: the random samplings that determines the alleles in each
individual are independent from individual to individual. This means that
the allele pool in generation t+1 may be viewed as being formed by 2N random
draws, with replacement, from the allele pool of generation t. Suppose that
we know X(t) = i/(2N). As each draw results in an A with probability
X(t) = i/(2N), the number 2NX(t+1) of A alleles in generation t+1, will be
a binomial random variable with parameters n = 2N and p = i/(2N). That
is, the Wright-Fisher models states that,

P

(
X(t+1)=

k

2N

∣∣∣ X(t)=
i

2N

)
=

(
2N

k

)(
i

2N

)k (
1− i

2N

)2N−k
,

0 ≤ k ≤ 2N. (2.13)

Observe a crucial and important difference between the infinite popula-
tion model and the Wright-Fisher model. In the infinite population models,
the allele frequencies are fixed; if the population starts out with a mix of A
and a alleles at a locus, these alleles remain in the population in all gener-
ations in the same proportion. In the Wright-Fisher model, the allele fre-
quencies are random, and will fluctuate around their expected values. This
fluctuation is called random genetic drift. The fluctuation makes possible
a dramatic difference from the infinite population case. Suppose the t = 0
generation starts out with a mix of both A and a alleles; in other words, the
initial frequency of A alleles is X(0) = i/(2N), where i > 0 and i < 2N .
Then in the next generation there is a positive probability (1− (i/2N))2N

that there are no A alleles, and a positive probability (i/2N)2N that there
are no a alleles. In the first case, one says that allele A becomes fixed, in the
second, that allele a becomes fixed, because, after fixation once it becomes
fixed, it remains the only allele in all future generations. If no allele is fixed
in the t = 1 generation, there is still a probability it gets fixed in the t = 2
generation, and so on. Can a population obeying the Wright-Fisher model
remain forever in a state in which both alleles are present? The answer is
no. With probability one one allele or the other must eventually become
fixed through random genetic drift. Which allele becomes fixed is a matter
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of chance, but fixation will eventually happen. An argument for this will be
given later in the treatment of Markov chains.

The evolution of the probability mass function of X(t) can be derived
from the conditional probability rule in (2.13) and a second assumption,
called the Markov chain property, of {X(t)}t≥0. (Markov chains will be
discussed in detail later; the condition is not necessary to understand right
now.) Howevery, it is not possible to derive a simple expression for the
probability mass function at arbitrary t, and it is necessary in general to find
approximations. For the moment, to illustrate how the Wright-Fisher models
works, we work an example computing the probability mass function for the
first three generations, starting from a given initial frequency of A alleles.

Example 2. Consider a population of 10 individuals evolving according to
the Wright-Fisher model. Assume that in the t = 0 generation, the frequency
of A alleles is 0.5. According to equation (2.13), the probability mass function
of X(1) is

p(k, 1)
4
= P

(
X(1)=

k

20

∣∣∣ X(0) = 0.5

)
=

(
20

k

)
(.5)k(.5)20−k =

(
20

k

)
(.5)20,

for integers k, 0 ≤ k ≤ 20. What about p2(k), the probability mass function
of X(2)? Using the rule of total probablities,

p(k, 2) =
20∑
j=1

P

(
X(2) =

k

20

∣∣∣ X(1) =
j

20

)
P (X(1)=j)

=
20∑
j=1

(
20

k

)(
j

20

)k (20− j
20

)20−k (20

j

)
(.5)20.

This is already unpleasant. p(k, 3), the probability mass function of X(3),
can be computed in terms of p(k, 2) by applying the rule of total probabability
again:

p(k, 3) =
20∑
j=1

P

(
X(2) =

k

20

∣∣∣ X(1) =
j

20

)
p(j, 2).

We could plug in the expressions derived above p(j, 2), but we will just get
a very complicated formula. However, the principle extends; for each t,
p(k, t+1) can be computed in terms of p(k, t) using the total probability rule.



18 CHAPTER 2. POPULATION GENETICS MODELS

As an application, suppose we want to know the probability that allele A
is fixed by the t = 2 generation. This is

p(20, 2) =
20∑
j=1

(
j

20

)20
(

20

j

)
(.5)20.

2.3.4 Infinite population model with selection.

We shall now modify the infinite population model to account for selection.
The effects of selection will be incorporated in the model using the selec-
tion coefficients wAA, wAa and waa. As explained in section 2.2, these are
interpreted as conditional probabilities of survival to reproductive maturity
of the different genotypes. For example wAA is the probability that an in-
dividual survives to reproductive maturity, given that it is AA. The precise
assumptions of this subsection are therefore (A.1), (A.2), (A.3), (A.5) and

No mutation or migration. Selection coefficients wAA, wAa, waa. (A.4)′

To state the model, it is necessary to modify the analysis that led to
equation (2.8). Consider generation t+1. Let U denote the event that an
individual born to generation t parents survives to reproductive maturity.
Let EAA be the event that an individual born to t generation parents is AA;
define EAa and Eaa similarly. The probability of EAA is just the probability
k(t+ 1) computed in equation (2.8), and likewise P(EAa) = 2`(t+ 1) and
P(Eaa) = m(t+1). By the total probability rule,

P(U) = P(U | EAA)P(EAA + P(U | EAa)P(EAa)

+P(U | Eaa)P(Eaa) (2.14)

= wAAp
2
A(t) + wAa2pA(t)(1− pA(t)) + waa(1− pA(t))2.

For later purposes, it is convenient to define the fitness function

W (p) = p2wAA + 2p(1− p)wAa + (1− p)2waa, 0 ≤ p ≤ 1.

With this notation, equation (2.14) is written,

P(survival to reproductive maturity in generation t+1) = W (pA(t)) .

The probability that an individual is AA at time of reproductive maturity
in generation t+ 1 is the conditional probability that an individual born
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to generation t has genotype AA given that it has survived to reproductive
maturity. This is

P (EAA | U) =
P(EAA ∩ U)

P(U)
=
P(U | EAA)P(EAA)

P(U)

=
wAAp

2
A(t)

W (pA(t))
. (2.15)

In going from the second expression to the third in this derivation, we used
the equality ‘P(EAA∩U) = P(U | EAA)P(EAA), which is a direct consequence
of the definiton of conditional probability; this step is really just a derivation
of Bayes rule for the original conditional probability on the left.

Similar reasoning gives

P (EAa | U) =
2wAapA(t)(1− pA(t))

W (pA(t))
, (2.16)

P (Eaa | U) =
2waa(1− pA(t))2

W (pA(t))
, (2.17)

The infinite population assumption means that population frequencies are
set equal to probabilities. So, for example, K(t+1) is identified with the first
conditional probability, the probability of being AA given the probability
of survival to reproductive maturity. The update equations for genotype
frequencies follow as an immediate consequence:

K(t+1) =
pA(t)2wAA
W (pA(t))

(2.18)

2L(t+1) =
2pA(t)(1− pA(t))wAa

W (pA(t))
(2.19)

M(t+1) =
(1− pA(t))2waa
W (pA(t))

. (2.20)

As in the model with no selection, the genotype frequencies in generation
t+1 depend only on the allele frequencies in generation t. Therefore, it is
possible to summarize (2.18)–(2.20) by one equation for the allele frequency
pA. Using pA(t+1) = K(t+1) + L(t+1), equations (2.18)–(2.20) imply

pA(t+1) =
pA(t)2wAA + pA(t)(1− pA(t))wAa

W (pA(t))
(2.21)
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Analysis of this equation will reveal how the allele frequency evolves under
the influence of selection on the genotypes. From the scientific point of view,
it is interesting to calculate limt→∞ pA(t) and to show how it changes as the
relative values of wAA, wAa and waa change. The mathematics is quite a bit
more complicated than in the case of no selection, and the theory is defered
to section 2.4.

Exercise 4. Using the selection coefficients wAA, wAa, waa, modify the Wright-
Fisher model to include selection. Your final answer should be a formula
that specifies how to compute the conditional probabilities on the left side
of equation (2.13).

2.3.5 Infinite population with mutation, but no selec-
tion

In this section, we derive a model assuming (A.1)–(A.3) and (A.5) and no
selection or migration. However, we will allow for mutations between A and
a forms of the alleles. Specifically, we replace assumption (A.4) with

(A.4)′′: No selection or mutation. In reproductive transmission, an A
allele mutates into an a allele with probability u and an a allele mutates into
an A allele with probability v. The probabilities u and v satisfy 0 < u+v < 2.

The case in which u = 0 and v = 0 is excluded in (A.4)′′ to impose some
mutation. The case in which u + v = 2, or equivalently, u = v = 1, is
excluded because, since it implies that A always mutates to a and a to A, it
is unrealistic.

Assumption (A.4)′′ means that the probability that a parent contributes
an A in a random mating is

(1− u)pA(t) + vpa(t).

(Derive this from the total probability rule.) We learned in analysis of the
infinite population with random mating that the frequency pA(t+1) of allele
A in generation t+1 is just the probability the probability of drawing A in
a random sample of the allele pool of generation t. With no mutation or
selection, this fact leads directly to the constancy of allele frequency derived
in equation (2.11). But with mutation, it yields the model:

pA(t+1) = (1− u)pA(t) + v(1− pA(t)) = (1− (u+ v))pA(t) + v. (2.22)



2.3. ONE LOCUS/TWO ALLELE MODELS 21

(The genotype frequencies will be given by K(t+1) = pA(t+1)2, 2L(t+1) =
2pA(t+1)(1− pA(t+1)), and M(t+1) = (1− pA(t+1))2.)

Equation (2.22) is an example of a first order, linear, inhomogeneous
difference equation and can be solved explicitly. The first step is to define
p̃A(t) = pA(t) + c where c is a constant. By plugging this into (2.22),

p̃A(t+1) = (1−(u+v))p̃A(t)+v+c−c(1−(u+v)) = (1−(u+v))pA(t)+v+c(u+v).

Now choose c to make the constant term v + c(u + v) = 0; in other words
c = −v/(u+ v). Then

p̃A(t) = (1− (u+ v))p̃A(t).

Exercise 5. Show by induction that p̃A(t) is

p̃A(t) = (1− (u+ v))tp̃A(0).

Exercise 6. What is the limiting behavior of pA(t) as t→∞ ? The condition
0 < u+v < 2 in assumption (A.4)′′ implies that −1 < 1− (u+v) < 1. Show
that

lim
t→∞

pA(t) =
v

u+ v
.

Conclusion. With mutation pA(t) tends to the limiting value v/(u + v),
which is independent of the initial frequency pA(t). If v > 0 and u > 0,
variation between A and a alleles is maintained. If v = 0, while u > 0,
allele A disappears in the long run limit, while if u = 0 and v > 0, allele a
disappears.

Exercise 7. Analyze the solution of (2.22) when u = 1 and v = 1 and
interpret.

Exercise 8. Let pA(0) = 0.5, Let p
(1)
A (t) denote the allele frequency in gen-

eration t in the the case in which u = 1/4 and v = 1/2. Let p
(2)
A (t) be the

allele frequency in generation t in the case that u = 1/16 and v = 1/8.

a) Show that the limiting frequency, as t→∞, is the same in both cases.

b) Denote the limiting frequency found in a) by p̄. Find the smallest

value T1 such that |p(1)
A (T1) − p̄| ≤ 0.01. Find the smallest value T2 such

that |p(2)
A (T2) − p̄| ≤ 0.01. (Note that p

(1)
A (t) and p

(1)
A (t) are both increasing

in t.) Compare T1 and T2 and explain why your result is to be expected on
intuitive grounds, considering the mutation rates in both cases.
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2.4 Extensions

This section is a sequence of guided exercises in which, following the analysis
of section 2.3, you are to set up and analyze extensions to the one locus/two
allele models. Throughout, only infinite population models are considered.
You will see that the one locus/two allele assumption and the assumption
that the organism is monecious are not really important in the principles
that give the Hardy-Weinberg equilibrium.

2.4.1 One locus/multiple alleles

In this section you will set up a model for one locus with many alleles,
assuming (A.1)-(A.5). The general model will have alleles A1, A2, . . . , Am
all at one locus. The allele frequencies in generation t are denoted by
p1(t), p2(t), . . . , pm(t), where pi is shorthand for pAi . Of course p1(t) + · · · +
pm(t) = 1. The genotype frequencies in generation t are denoted by fAiAj(t),
where 1 ≤ i ≤ j ≤ m, in accordance with the notation of section 2.2. For
convenience, fij(t) can be used as shorthand for fAiAj(t).

You may do the exercises that follow either for general m, or, for nota-
tional simplicity, m = 3.

Exercise 9. Express pi(t) in terms of fij(t).

Exercise 10. Apply random mating to express fij(t+1) in terms of the allele
frequencies in the previous generation.

Exercise 11. Generalize the Hardy-Weinberg theorem to the multi-allele
case. Show that the allele frequencies are constant and that the genotype
frequencies reach equilibrium values in generation t = 1 that remain fixed
for all future time. Express those equilibrium genotype frequencies in terms
of the allele frequencies in the time t = 0 population.

Exercise 12. (See Exercise 3.) Show that the set of genotype frequencies
fij(t), 1 ≤ i ≤ j ≤ m, is in Hardy-Weinberg equilibrium if and only if for
every i 6= j, f 2

ij = 4fiifjj.

2.4.2 One locus/two alleles for dioecious populations

In this section, we show that the Hardy-Weinberg equilibrium also extends
to dioecious organisms, at least for a locus on an autosomal chromosome.
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Our model will assume conditions (A.1), (A.2), (A.3), (A.4), that is, random
mating in an infinite population with no selection, mutation, or migration,
and non-overlapping generations. We add one more assumption:

Sex and locus genotype are transmitted independently (A.6)

To adapt the model to dioecious organisms and derive the equations for the
evolution of allele and genotype frequencies, it is necessary to consider the
male and female portions separately, at least initially. Let Km(0), 2Lm(0),
Mm(0) be the frequencies of genotypes AA, Aa, and aa, respectively, among
the males in the t = 0 generation. Let Kf (0), 2Lf (0), M f (t) be the cor-
responding frequencies among the females. Denote the allele frequencies by
pmA (0) and pfA(0). That next exercise shows that the Hardy-Weinberg prin-
ciple remains true. The only difference is that it takes two generations to
reach Hardy-Weinberg equilibrium. Because of assumption (A.6), the first
mating equalizes genotype and allele frequencies between the male and female
subpopulations. Once this occurs, future matings produce Hardy-Weinberg
equilibrium.

Exercise 13.
a) Calculate the frequencies in the entire population of the genotypes

AA, Aa, and aa in the first generation. (Remember that the frequency of a
genotype is interpreted as the probability of getting the genotype in a random
draw. Assume that males and females are drawn with equal probability.)

b) Random mating under assumption (A.6) is equivalent to producing a
new offspring by a random draw of a genotype from the male population and
an independent random draw of a genotype from the female population and
then, independent of the genotype, choosing a sex at random, with male and
female choice being equally likely. Since the choice of sex is independent of
choice of genotype, the frequency of each genotype in the t = 1 generation
will be the same in males and females, and equal to the overall genotype
frequency. The same will be true in all subsequent generations. Find the
common genotype frequencies in the t = 1 generation in terms of the allele
frequencies in the t = 0 generation. Show that the frequency of allele A
in the t = 1 generation, which is the same if restricted to either males or
females, is (1/2)(Km(0) +Kf (0) + Lm(0) + Lf (0)).

c) Show that the genotype frequencies in all following generations are in
Hardy-Weinberg equilibrium, and determine the equilibrium values in terms
of the frequencies of the t = 0 generation.
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Consider next, a model for a locus on the X chromosome of a human
population. Males will have genotypes consisting only of a single letter,
either A or a; the frequency of genotype A among the males of generation t
is simply the frequency of allele A among males and we are denoting it by
pmA (t); there are no frequencies Km(t), Lm(t),Mm(t) to contend with. Again
we assume random mating. The probability that random mating results in a
female is the probability that the male parent passes on its X chromosome,
which we assume occurs with probability one-half. The males in generation
t+1 get their A chromosomes only from females of the previous generation.

Exercise 14. a) Show that random mating implies thatK(1)f = pmA (0)pfA(0),
2Lf (1) = pmA (0)(1−pfA(0))+pfA(0)(1−pmA (0)), M(1)f = (1−pmA (0))(1−pfA(0)),
and pfA(1) = (pmA (0) + pfA(0))/2. Show also that pmA (1) = pfA(0).

b) The same arguement as in a) shows that for any t,

pmA (t+1) = pfA(t)

pfA(t+1) =
1

2
(pmA (t) + pfA(t)) =

1

2
(pfA(t− 1) + pfA(t))

To solve pfA(t+1) =
1

2
(pfA(t− 1) + pfA(t)), look for a solution of the form

pfA(t) = α + βrt. By plugging this into the equation show that there is a
value r, not equal to 1, such that α + βrt will be a solution. (Hint; find
a quadratic equation for r and find a root not equal to 1.) Determine the
values of α and β in terms of pfA(0) and pmA (0) by setting α+ β = pfA(0) and
α+βr = pfA(1) = (pmA (0) + pfA(0))/2. As a result, find a formula for pfA(t) for
general t.

c) Observe that the overall frequency of A alleles in generation t = 0 is p
4
=

(2/3)pfA(0)+(1/3)pmA (0). Using the results of b), show that limt→∞ p
f
A(t) = p

and limt→∞ p
m
A (t) = p, and conclude that the limiting genotypes in the fe-

male population are in Hardy-Weinberg equilibrium with the original overall
frequency of A’s.

d) Use the results of part b) to show (2/3)pfA(t) + (1/3)pmA (t) is constant
from generation to generation. This extends the principle that random mat-
ing implies allele frequencies are constant.
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2.4.3 One locus/two alleles with overlapping genera-
tions

Consider an infinite population models in which individuals are continually
dying and being born. It will be assumed that the death rate and birth rate
are the same, and time will be measured in units so that on the average 4t
are born and 4t individuals die in a time interval of length 4t. There is
no preference or selection for genotype in death. This means that genotypes
die in proportion to their frequency in the population. Mating is random,
so genotypes are created by random selection of alleles from the current
population. Let us translate these conditions into mathematics. Let p denote
the frequency of allele A at time t = 0. Because of random mating, this
frequency will remain constant in time. Let K(t) denote the frequency of
genotype AA at time t. Consider K(t + 4) − K(t). In time 4t, K(t)4t
individuals of genotype AA die and p24 AA’s are born. Thus

K(t+4)−K(t) = 4t(−K(t) + p2).

Divide by 4t and let it tend to 0. Then

K ′(t) = lim
4t↓0

K(t+4)−K(t)

4t = −K(t) + p2. (2.23)

Exercise 15. Let K(0) = K. Solve equation (2.23) in terms of K and t.
(Hint: consider K̃(t) = K(t) − p2.) Show that limt→∞K(t) = p2. Thus
K(t) will tend to the Hardy-Weinberg equilibrium value associated to allele
frequency p = pA(0), as time increases.

It is easy to see that the results of Exercise 15 generalize to the other
genotype frequencies. Conclusion: In this infinite population, overlapping
generation model, the Hardy-Weinberg equilibrium is achieved in the infinite
time limit.

If the turn-over rate is small, that is , if individuals are born and others
die frequently, it will not take long for the actual frequencies to become close
to the Hardy-Weinberg equilibrium values.


