
Chapter 1

Background

Probabilistic models in biology are applied in many and diverse problems.
In this course, we will focus on applications to genetics and to biological
sequence analysis. It is assumed that the reader has a general familiarity
of the current understanding of heredity—that heredity is carried in genes
encoded in the DNA of each cell and passed to future organisms in the
process of reproduction. Section 1 of this chapter, on genes and DNA, is a
synopsis of enough background biology to understand the models presented
and analyzed in these notes. There is also an html version of this section
available on the course web site, with informative links.

It is assumed as well in these notes that the reader has taken a first course
in probability. We will be building on this knowledge and introducing further
concepts in statistics and probability. Section 2 of this chapter reviews some
key points of elementary probability, to establish notation and single out
basic and often-used concepts. A full, but concise, review of definitions and
formula from beginning probability is provided for reference in the Appendix.

1.1 Genes and DNA

1.1.1 Mendelian genetics and its molecular basis

Prior to the amazing advances of molecular biology in the second half of the
twentieth century, heredity was understood in terms of Mendelian genetics.
Using pollination by hand, Mendel crossed pea plants and observed the rela-
tionship of their traits to those of their offspring. He observed, for example,
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that the peas themselves were either wrinkled yellow, wrinkled green, smooth
yellow, or smooth green, and he counted the number of individuals with each
trait through several generations of crossings. To explain his results, Mendel
postulated first that traits are passed down from generation to generation in
discrete units, which we now call genes. Thus, for peas, he proposed that
there is a gene for pea color, with two variants, green and yellow, and a sec-
ond gene for skin type, again with two variants, smooth and wrinkled. The
different variants governing one trait or characteristic are now called alleles
of the gene; thus the gene for pea color is said to have two alleles, yellow
and green. Mendel also postulated that each organism contains two copies
of each gene, that if the two copies contain different alleles, only one allele
of the two, the dominant allele, is expressed physically in the organism, and
that genes for different traits are passed down independently of one another.
This last postulate—the independent assortment postulate–means that for a
specific gene, offspring can have any combination of the alleles present in the
parents, as long as one comes from the father and one from the mother, and
these combinations are statistically unlinked among the offspring.

Mendel’s postulates are not all strictly correct, but they provide the right
framework for genetic analysis once modified to account for how reproduc-
tion works. The seminal concept of hereditary units, genes, has turned out
to be correct. The independent assortment postulate is often true, as in
Mendel’s pea experiment, but not universal; oftentimes assortment of alleles
is statistically linked, for reasons to be explained below. Often, also, one
allele is not strictly dominant. Nevertheless, with the correct modifications,
Mendel’s theory is the basis of modern genetics.

In early genetics, the idea of a gene was an inference from experiments;
Mendel and his successors would have had little basis for speculating on its
actual physical manifestation. But the theory’s success suggested that genes
exist as real physical entities. This is correct, and the development of genetics
and molecular biology has progressively elucidated the physical basis of the
gene and of how it works, down to the molecular level.

The first step was connecting genes to chromosomes and their role in
sexual reproduction. In eukaryotic cells, that is, cells with nuclei, the chro-
mosomes are large complexes of protein and nucleic acid residing in the nu-
cleus. In prokaryotic (without nucleus) cells, such as those of bacteria,
the chromosome is generally a circular loop of DNA. By the early twenti-
eth century, it was understood that each gene may be physically identified
with a small and specific location in the chromosome. The position along
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the chromosome at which a gene occurs is called its locus. Alleles are then
understood to be alternate forms of a gene that can reside at its locus. It was
also observed that the normal body cells of most organisms are diploid, that
is, they have two copies of each chromosome in their body cells, (with the
exception of the X chromosome in males of species with two sexes). Diploidy
is the physical basis of Mendel’s hypothesis that each organism contains two
copies of each gene; each chromosome of a pair carries a copy. Diploidy allows
individuals to carry two different alleles of gene.

The manner in which chromosomes are passed on to progeny in sex-
ual reproduction explains Mendelian assortment and when it is independent
and when not. For sexual reproduction, organisms make gametes—eggs or
sperm—which are haploid cells, meaning they contain only one copy of each
chromosome. Mating causes the union of two gametes, producing a diploid
zygote that develops into the mature individual. Thus offspring get half of
their genetic material from each parent. Gametes are produced by a process
called meiosis, in which the genetic material of an original diploid cell is
duplicated once and then divided among four haploid progeny cells. Con-
sider the two copies, R1 and R2, of a chromosome in a diploid individual. In
the simplest case, these copies maintain their identity throughout meiosis;
two of the final haploid gametes resulting from a single meitotic division will
contain a copy of R1, and two will contain a copy of R2. If ` is a locus on
this R chromosome and A denotes the allele at ` on R1 and a denotes the
allele at ` on R2, then half of the gametes get A, and half get a. Consider
copies S1 and S2 of a different chromosome of the diploid parent, on which
resides a locus j, and suppose that B is the allele at j on S1, while b is the
allele at j on S2. Suppose again that S1 and S2 are transmitted whole in
meiosis. If we follow both pairs of chromosomes in a meiotic cell division,
we will see that the the different copies of the R and S chromosomes can be
transmitted in any combinations, that is, the resulting gametes can end up
with copies of any of the four combinations (R1, S1), (R1, S2), (R2, S1), and
(R2, S2). Furthermore, if we record the results of many meiotic divisions, we
will find that these different combinations occur with equal probability, that
is, the copies of the R and S chromosome assort themselves independently.
The alleles on loci ` and j go along for the ride. Thus, the gametes can
contain any of the allele pairs, (A,B), (A, b), (a,B), or (a, b) corresponing to
the four different combinations of chromosome copies, and the transmission
of A or a is independent of the transmission of B or b. This explains the
independent assortment of traits in Mendel’s experiment; it is due to having
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genes that reside on different chromosomes.

The story for two loci on the same chromosome is different. Suppose that
` and k are loci on the R chromosome, and suppose that copy R1 has allele
A at locus ` and allele C at locus k, while R2 has allele a at ` and allele
c at k, In the scenario in which R1 and R2 are transmitted whole to the
gametes, there can be no assortment of the alleles at ` and k. Each gamete
will contain either A and C or a and c. In actual fact, such strict linkage is
never observed, and alleles at loci on the same chromosome can assort. The
reason is a process in meiosis called recombination, in which pieces pieces
of R1 and R2 exchange in meiosis, so that the copies of R in the gametes are
an amalgams of material from R1 and R2. Recombination can thus separate
loci on the same chromosome of the parent into different gametes. Figure 1
is a schematic explanation. On the top are the two original copies R1 and
R2 of a chromosome. On the bottom are the results of a recombination in
meiosis. A and a, and C and c are the alleles at two loci.

R1
s ss s
A C

a c
R2

s ss s
A c

a C

Figure 1.

Recombinations and where they are located seem to be random events.
They can occur throughout the chromosome and may or may not occur
between two given loci. Thus, while alleles at loci on the same chromosome
can assort by recombination, they are not transmitted independently, because
with some probability no recombination occurs, causing them to be linked.

The discoveries about genes and chromosomes led to a refined definition
of gene. We quote here from the glossary of W.J. Ewens’ monograph, Pop-
ulation Genetics, Methuen, London (1969): a gene is ”a minute zone of
a chromosome which is the fundamental unit of heredity. A gene partially
or wholly governs the expression of a certain character or characters in an
individual.” This definition still does not take us down to the molecular level,
nor explain how inheritance is carried on the chromosome, but it is adequate
to understand the modern theory of population genetics.
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In the last half of the twentieth century, an understanding of the gene at
the molecular level emerged. Here are the main points, necessarily oversim-
plified and over-generalized—biology is full of exceptions to the rule! You
will need to understand these points to appreciate the models and problems
arising in biological sequence analysis.

1. DNA (RNA in viruses) is the heredity-carrying material of the chro-
mosome.

2. DNA is a linear, unbranched polymer consisting of two complementary
chains of nucleotides; each nucleotide consists of one of the four nucleic
acids, adenine or guanine (the pyridines), or cytosine or thymine (the
pyrimidines), attached to a deoxyribose sugar molecule, and a phos-
phate group, also attached to the sugar. The nucleotides of one chain
link to each other through bonds between the phosphate groups. In a
single-stranded chain, the sugar molecules and phosphate groups thus
form a backbone supporting a sequence of nucleic acids. The comple-
mentary chains in turn link to one another by hydrogen bonds between
the nucleic acid, with adenine bonding only to thymine and guanine
only to cytosine, and the chains twist around one another to form the
famous double helix. A unit consisting of paired nuceotides is called
a base pair. It is abbreviated by bp and used as a unit of length
when discussing DNA. A unit of 1000 base pairs, a kilobase pair, is
abbreviated kb.

The deoxyribose sugar molecules has 5 carbon atoms, which are la-
belled from 1’ to 5’. In the DNA backbone chain, the 3’-carbon of a
deoxyribose molecule links to the 5’-carbon of an adjacent deoxyribose
by way of a phosphate group. This 5’ to 3’ linkage gives an orientation
to a single strand of DNA. Hence, ignoring the details of molecular
structure, one can represent a DNA strand abstractly as an ordered
sequence of nucleic acids, and this sequence carries much of the infor-
mation needed to do genetic analysis. As an example, consider the
following representation of a made-up DNA sequence:

5′ − AGCGTTAGGCTATTAGGCGA− 3′

The letters A, T, C, and G are shorthand for the 4 bases. In the
topmost strand, the leftmost base is A (adenine); if it links to any base
on the left, it does so via the 5’ carbon of the deoxyribose (not shown)
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of the nucleotide. The 3’-carbon of this first nuceotide then links to
the 5’-carbon of the deoxyribose of the next nucleotide, to which base
C is affixed, and so on down the line. Of course in the cell, DNA is
found usually as a double stranded molecule. If the example just given
were part of one of those strands, the double stranded piece to which
it corresponded could be represented as:

5′ − AGCGTTAGGCTATTAGGCGA− 3′

3′ − TCGCAATCCGATAATCCGCT − 5′

The top and bottom strands are linked by hydrogen bonds, as previ-
ously mentioned, with links only between A’s and T ’s or between G’s
and C’s, and the complementary (bottom) strand is oriented in the
complementary, 3′− 5′, direction. Therefore, representation of a single
strand is enough to determine the base pairs of the double-stranded
molecule.

Important note: When dealing with single stranded DNA, we shall
take the 5’-3’ direction as the default orientation and usually omit its
specification.

3. Chromosomal DNA holds the instructions for the production of polypep-
tides, which are the linear chains of amino acids making up proteins.
In essence, the hereditary material of a chromosome can be thought
of as a single, long string of DNA. For each polypeptide an organism
produces there is a corresponding spot along a this DNA string with
instructions for constructing it. DNA stores the instructions by means
of the famous genetic code. There are 20 different amino acids that
go into the making of any protein. Different three-letter ”words” or
codons from the DNA alphabet {A, T, C,G} either code for one of the
20 amino acids or signal a start or stop to coding. A complicated tran-
scription mechanism in the cell, ”reads” the DNA sequence and builds
a protein (polypeptide) by sticking together amino acids in the order
specified by the successive codons. The coding regions of a DNA se-
quence are called exons—they are the regions which are (ex)pressed.
Between the exons are non-coding regions called introns, which, in
higher animals, are quite extensive and constitute more of the DNA
than the exons. The function of introns, if any, is not well understood.
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The complete DNA sequence of all the chromosomes in the nuclei of
an organism is called its genome.

This molecular-level picture leads to the most refined and precise defini-
tion of a gene, the so-called one gene, one polypeptide theory; a gene
is a unit, identifiable with a stretch of coding DNA, that governs the pro-
duction of a polypeptide. (Strictly speaking, this is not always true—there
are DNA segments that get expressed as RNA only, but not as protein.)
In this interpretation, the locus of a gene is that specific stretch of DNA
where the code for its associated polypeptide is located. The alleles of a gene
are variant DNA sequences at its locus. They will get expressed as differ-
ent versions of the associated polypeptide, which, if sufficiently different in
their biochemical properities, will in turn produce individuals with varying
traits. Sickle-cell anemia provides a classic and dramatic illustration of the
one gene, one polypeptide theory. A specific gene encodes instructions for
fabrication of the beta sheet of hemoglobin. In normal hemoglobin, glutamic
acid occupies the sixth position in the beta chain (you don’t have to know
what this is—it’s just a part of the hemoglobin molecule), and it is encoded
for in the gene by the DNA triple GAG. The allele responsible for sickle-cell
anemia differs from the normal allele in only one base! The codon for the
sixth amino acid in the beta sheet is GTG instead of GAG and it is expressed
as valine rather than glutamic acid in the beta sheet. This one substitution
so affects the structure of hemoglobin as to cause sickle-cell anemia.

1.1.2 Genotypes, phenotypes, and polymorphisms

The genotype of an individual is the genetic endowment carried by its chro-
mosome. You can think of it as a list of the alleles an individual has at the
loci of its chromosomes. The word genotype is actually used in two senses,
one very broad, the other restricted. In the broad sense, ocurring in general
discussions, it refers to an organism’s full genetic composition, that is, the
alleles at all its loci. The restricted usage applies to the description of alleles
at a given, relatively small, set of loci, and is used in genetical studies of
particular genes. Consider, for example, the study of a single locus `. Each
individual has two copies of the locus, one per chromosome. The genotype
of an individual at ` is therefore represented by a pair of letters representing
the two alleles that occur. on the chromosomes containing `. If there are
two possible alleles A and a, the genotype will be one of the pairs. AA,
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Aa, or aa. In this context, the following terminology is very important. An
individual with identical alleles at a locus (that is, AA, or aa) is said to be
homozygous at the locus; an individual with different alleles (Aa) is said
to be heterozygous.

It is important to distinguish an organism’s genotype from its pheno-
type. The phenotype is the set of the organism’s physical, biochemical,
and behavioral traits—how it looks and functions in the world. As with the
word genotype, the term phenotype can be applied either in a broad sense
to the whole organism or, in a restricted sense, to a specified set of traits.
The relationship between the genotype and phenotype, between genes and
traits, is complicated and varied. First, the expression of an individual’s
genetic endowment, as it develops into a mature individual and lives its life,
is mediated by the environment. Environmental influences will cause even
genetically identical individuals—in other words, clones—to have different
phenotypes; for example, supplied with different amounts of nutrition, clones
might grow to different sizes. Second, individuals with different genotypes
can have the same phenotype. This happens because of the phenomenon of
allelic dominance. For example, in Mendel’s pea plants, the allele for yellow
color dominates that for green. When a plant is a heterozygote for color,
that is, possesses one allele for green and one for yellow, it will have yellow
peas, just the same as a homozygous plant with two yellow alleles. Thus
heterozygotes and homozygotes for yellow will be phenotypically indistin-
guishable. Dominance explains the fact observed in Mendel’s experiment
that a cross between two plants with yellow peas can give rise to progeny
with green peas, because if both parents are heterozygous, it is possible for
their offspring to end up with two green alleles. One allele is not always
dominant over another. They may both affect the phenotype, leading to a
situation in which heterozygotes and homozygotes do differ in phenotype. A
third complication in the relation between genotype and phenotype is the
complex way in which genes, which code for proteins, affect traits. There
are of course traits controlled by a single gene, such as in the example of
sickle cell anemia, described above. The pea traits studied by Mendel also
appear to be controlled by single genes—a very fortunate fact for Mendel
as it led him to the idea of discrete hereditary units. But other traits may
be governed by the interaction of many genes, so that various combinations
of alleles can cause subtle difference between individuals in the traits’ many
variables. These are called quantitative traits, and it is in general difficult
to sort out their genetics.
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Let us now step back from a focus on individuals and consider popula-
tions. Fix a particular locus or gene to consider in a population of individuals
of the same species. The situation in which two or more alleles at this locus
are present in the population is called a polymorphism. Actually this is
not quite right. Technically, a polymorphism is defined to occur only if the
frequency of the most common allele is less than or equal to 0.95. The idea is
to restrict the term to those situations in which there is real allelic diversity
that is naturally maintained, since for almost any locus in a large population
there will be a least a few individuals with a variant gene, perhaps one re-
currently introduced by rare mutations. In practice, it seems that geneticists
loosen the 95% rule when discussing rare genetic diseases.

At the molecular level, a polymorphism in a gene is due to variation,
a polymorphism, in the DNA sequence encoding the gene. Genes reside in
exons, so genetic polymorphisms are by definition based on DNA polymor-
phism in exons. But there are also sites in introns, called DNA markers, at
which variation of the DNA sequence occurs across populations. The term
polymorphism is used to describe variation in DNA markers, as well.

Polymorphisms in the molecular structure of DNA take a number of
forms. A single nucleotide polymorphism, abbreviated SNP, is a poly-
morphism in the nucleic acids present at a specific base pair. Sickle-cell
anemia is an example of a SNP, because, as explained, it is caused by a
substitution at a specific base pair in the gene coding for the beta sheet of
hemoglobin. Polymorphisms occur also at satellite DNA sites. DNA satel-
lites are locations in which a short DNA word is repeated over and over,
as in CACACACACACACACACACACA, a tandem repeat. (The word
satellite comes from the term satellite bands used to describe the bands by
which repeats are revealed in centrifugal fractioning of DNA.) Satellites come
as microsatellites, up to 20kb long with repeat units up to 25bp, and min-
isatellites, less than 150bp with small repeat units, typically tandem repeats.
They can be highly polymorphic in the number of repeat units, and so they
serve as useful DNA markers. A third type of molecular polymorphism is
the restriction frament length polymorphism, or RFLP. This will be
described in more detail in a later chapter. For now we give only a brief
explanation. There is a class of enzymes, called restriction enzymes, which
cut DNA at specific sequences of bases called recognition sequences. For
example, the recognition sequence of the Alu1 enzyme is

5′ − AGCT − 3′



10 CHAPTER 1. BACKGROUND

3′ − TCGA− 5′

and when it encounters this sequence it cuts through the DNA between the
second and third base pairs. If a DNA segment is mixed with the enzyme it
will be broken into relatively small fragments, the restriction fragments, in
a process called a restriction sequence digest. Suppose there is a location of
four base pairs that is polymorphic for the recognition sequence of Alu1—
that is, some individuals have the recognition sequence at the locus, others
don’t. Then this location will be cut in some individuals but not in others,
and this means that the distribution of fragment lengths in digests of their
DNA will vary, thus producing an RFLP.

1.2 Probability review

It is assumed that you have seen most of this elementary material; the review
should help you recollect and organize it for the applications of this course.

1.2.1 Some basic definitions

The basic definitions of probability theory really just provide a uniform
framework in which to construct probability models. Take the concept of
a probability space. Suppose we are studying an experiment, such as a
mating trial, with random outcomes. We form a set Ω of all the possible
outcomes, which in this chapter, will always be a finite set. A probability
model of the experiment would just be this set Ω of outcomes together with
an assignment of numbers P(A) in [0, 1] to subsets A of Ω, where P(A) is to
be interpreted as the probability that the outcome of a trial belongs A. As
such pairs (Ω, P) are so fundamental an abstraction of probability modelling,
probabilists dignify if with the name probability spaces. (The assignment
P of course cannot of course be arbitrary; it must satisfy, in the case of finite
S, at least the properies

• P(Ω) = 1, and;

• P(A ∪B) = P(A) + P(B) if A and B are disjoint.

This means that P(A) =
∑
s∈A

P({s}), where P({s}) is the probability that

precisely outcome s occurs, so, in the case of a discrete Ω, P is determined
by the probabilities of the individual outcomes.)
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You should also know another concept with which to frame a probability
model— the random variable. Often, the outcome of an experiment can
be represented as a real number. We label this potential outcome by a
capital letter, usually from the end of the alphabet, like X, and call it a
random variable. Recall that the random variable X is discrete if the set
of possible values it can take on, is a finite or countable set of real numbers
S = {s1, s2, s3, . . .}. For a such an S, a probability model for the experiment
whose outcome is represented by X consists in specifying the probabilities

pX(s)
4
= P (X = s) , for s in S. (1.1)

(The symbol
4
= means we are defining the symbol on the left of the equation

by the expression on the right.) pX is a function on S called the probability
mass function of X. More complicated experiment, or a series of experi-
ments, might result in a vector Z = (X1, . . . , Xn) of random variables. When
these are all discrete, the joint probability mass function of (X1, . . . , Xn)
is

pZ(s1, . . . , sn)
4
= P(X1 =s1, . . . , Xn=sn), (1.2)

for all possible values (s1, . . . , sn) of (X1, . . . , Xn).
We assume that the reader is familiar with these basic notions. We assume

as well that the reader knows what it means for events or random variables
to be independent, the definition of conditional probabilities and Bayes rule,
and the definition and rules for computing expected values and variances of
random variables. A brief summary of all these things may be found in the
appendix. We recall here the chief definitions.

Two events A and B are independent if

P(A ∩B) = P(A)P(B) (1.3)

Two random variables X and Y are independent if

P (X=s, Y = t) = P(X=s)P(Y = t) for all possible values s of X and t of Y .
(1.4)

Generalizing, the random variables X1, X2, . . . , XN are independent of one
another if

P (X1 = s1, X2 = s2, . . . , Xn = sN) = P(X1 = s1)P(X2 = s2) · · · P(XN = sN)
(1.5)
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for all possible values s1, s2, . . . , sN of X1, · · · , XN . Finally, for a discrete
random variable X, recall the definition of its expected value (or mean value),
and variance:

E[X]
4
=

∑
s∈S

spX(s) (1.6)

Var(X)
4
= E

[
(X − E[X])2

]
=
∑
s∈S

(s− E[X])2pX(s). (1.7)

1.2.2 Bernoulli, binomial and multinomial random vari-
ables

Bernoulli random variables A Bernoulli random variable is just a random
variable that takes on only two possible values s1 and s2. When discussing
Bernoulli random variables, we shall always assume the default values s1 = 0
and s2 = 1, unless we explicitly say otherwise. There is not much choice here
for the probability mass function. It has to be of the form,

p(0) = 1− p p(1) = p (1.8)

where p is a number in the interval [0, 1]. If X is a Bernoulli random variable
that has this as its probability mass function, then, by definition, p is the
probability that X equals 1: P(X = 1) = p(1) = p. It will be very useful in
the future to use the following expression for the function defined in (1.8):

p(s) = ps(1− p)1−s for s in the set {0, 1}. (1.9)

It is often also convenient to use q to denote 1 − p. In this case, we would
write (1.9) as p(s) = psq1−s.

One of the simplest applications of the Bernoulli model is a trial that
randomly results in either a success or a failure. To generate a Bernoulli
random variable from such a trial assign a 1 to a success and a 0 to a failure.
The language of success and failure trials is a convenient way to discuss
Bernoulli random variables. We use the description ”X is a Bernoulli random
probability with probability of success p” to indicate a random variable with
the probability mass function given in (1.8), whether or not we are thinking
in terms of successes and failures.

Example 1: Of course, a Bernoulli random variable is the probability model
for a coin toss. Another favorite use is to count whether a given event occurs
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or not. Here is an example. Suppose we are studying a locus with two
alleles A1 and A2 in a large population. We attach to each individual a label
indicating its two alleles; the possible labels are A1A1, A1A2, and A2A2 and
they are called the genotypes of the individuals. We perform the following
experiment. Draw an individual at random and record its genotype. If the
genotype is A1A1, let X = 1; otherwise, let X = 0. X is an indicator
random variable for the event of drawing an A1A1. Suppose the experiment
is repeated ten times, and let Xi indicate the outcome of trial i. Then each
Xi is a Bernoulli random variable and

∑10
i=1 Xi counts the total number of

times the event of drawing an A1A1 individual occurs in the 10 trials.

The expectation and variance of the Bernoulli are easy to compute di-
rectly. If X is Bernoulli with success probability p,

E[X] = 0 · (1− p) + 1 · p = p, (1.10)

Var(X) = E[X2]− (E[X])2 = 02(1− p) + 12p− p2 = p(1− p).(1.11)

Binomial random variables. Let n be a positive integers and let p be
a number in [0, 1]. A random variable Y has the binomial distribution
with parameters n, p if Y takes values in the set of integers {0, 1, . . . , n} and
has the probability mass function

p(k) =

(
n

k

)
pk(1− p)n−k, for k in {0, 1, . . . , n}. (1.12)

The binomial distribution is fundamental in applications because of the fol-
lowing fact. Let X1, X2, . . . , Xn be independent Bernoulli random variables

each with success probability p. Then the sum
n∑
i=1

Xi has the binomial

distribution with parameters (n, p). But, as in example 1, this sum is just
the total number of successes in the n trials. So, the binomial distribution
is the probability distribution for the number of successes in n independent
and identically distributed trials where p is the probability of success in each
trial. To help you recall this result, you are asked to derive it in the exercises.

To compute the expectation of the binomial, recall these basic facts:

(i) If Y1, Y2, . . . , YN are any random variables, each having a finite expec-
tation,

E [Y1 + Y2 + · · ·+ YN ] = E[Y1] + E[Y2] + · · ·E[YN ]; (1.13)
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(ii) If Y1, Y2, . . . , YN are independent random variables, each having a finite
variance,

Var (Y1 + Y2 + · · ·+ YN) = Var(Y1) + Var(Y2) + · · ·Var(YN). (1.14)

Now let X1, . . . , Xn be independent, Bernoulli random variables, each
with probability p of success, so that Y =

∑n
1 Xi is binomial with parameters

(n, p). Using (1.13) and (1.14) and the mean and variance of the binomial
random variable,

E[Y ] = np Var(Y ) = np(1− p). (1.15)

Example 2: Sampling with replacement Consider a box with a large
number of marbles, which are either red or green. Let p be the proportion of
marbles in the box that are red, that is, the number of red marbles divided
by the total number of marbles. If, in a random draw, any marble is equally
likely to be chosen, p is the probability of drawing a red one. A single random
draw is a sampling from the population of marbles. Suppose that we sample,
then return the marble to the box, sample again by a random draw, return
the marble, etcetera. This is called sampling with replacement. Each sample
is independent of the others and the probability that red is drawn is p each
time. Therefore the number of red marbles in n draws will be a binomial
random variable with parameters (n, p).

Multinomial distributions We start with an example. Suppose that
we have a box with three colors of marbles, red, green, and blue. Let p1 be
the probability of drawing a red, p2 the probability of drawing a green, and
p3 the probability of drawing a blue. Of course, p1 + p2 + p3. Sample the box
n times with replacement, and let Y1 be the number of reds drawn, Y2 the
number of greens drawn, and Y3 the number of blue. The random variables
Y1, Y2, Y3 are not independent; indeed, they must satisfy Y1 + Y2 + Y3 = n.
What is their joint distribution? It is:

P (Y1 =k1, Y2 =k2, Y3 =k3) =
n!

k1!k2!k3!
pk1

1 p
k2
2 p

k3
3 , (1.16)

for any non-negative integers k1, k2, k3 such that k1 +k2 +k3 = n. To see this,
consider a specific sequence of n draws that results in k1 red, k2 green, and k3
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blue marbles. Since the draws are independent their probabilities multiply,
and so the probability of any such sequence is pk1

1 p
k2
2 p

k3
3 . On the other hand

there are a total of of
n!

k1!k2!k3!
is the different sequences of draws giving k1

red, k2 green, and k3 blue marbles. Thus the total probability is given as in
(1.16).

The general multinomial distribution is a generalizaiton of formula (1.16).
To state it, recall the general notation,(

n

k1 · · · kr

)
4
=

n!

k1! · · · kr!
.

Fix two positive integers n and r with 0 < r < n. Suppose that for each
index i, 1 ≤ i ≤ r, a probability pi is given satisfying 0 < pi < 1, and assume
also that p1 + · · · + pn = 1. The random vector Z = (Y1, · · · , Yr) is said to
have the multinomial distribution with parameters (n, r, p1, . . . , pr) if

P (Y1 =k1, . . . , Yr=kr) =

(
n

k1 · · · kr

)
pk1

1 · · · pkrr , (1.17)

for any sequence of non-negative integers k1, . . . , kr such that k1+· · ·+kr = n.
The intepretation of the multinomial distribution is just a generalization of
the experiment with three marbles. Consider a random experiment with r
possible outcomes s1, s2, . . . , sr and for each integer i, 0 ≤ i ≤ r, let pi be
the probability of outcome si. Consider n independent repetitions of the
experiment, and let Y1 be the number of trials that result in outcome s1, Y2

be the number of trials that result in outcome s2, etc. Then (Y1, . . . , Yr) has
the multinomial distribution with parameters (n, r, p1, . . . , pr).

1.2.3 Populations and Sampling.

An important application of elementary probability is to model sampling
from a population for the purpose of statistical inference. We have already
introduced this type of application in examples 1 and 2. We will explain the
basic terminology and context for studying a population through random
sampling. Although you may not have encountered this in an elementary
probability course, the probability we actually use will be familiar and sim-
ple. The important thing is to understand the set-up, as it is basic to the
statistical analysis we shall introduce in the course.
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The first thing to understand is the general notion of a population. Be-
cause this is a course in applications to biology, we will be modelling ques-
tions about real populations in the sense that we normally think of them—a
collection of living organisms. The statistical notion of a population is more
abstract. It is a collection of objects—people, or marbles, or DNA sequences,
or pea plants—with measurable characteristics. Illustrative examples to keep
in mind are our box of different colored marbles or the students at Rutgers
labelled by weight and height. The latter example might arise in a study
of the distribution of heights and weights in young adults. In this example,
since we are only interested in heights and weights, we could think of the
population abstractly as a collection of height/weight pairs, rather than as a
population of actual students.

Consider now a population, each labelled by a single, real-valued measure-
ment (such as height). Assume the measurement can takes a discrete value
in a finite set S = {s1, s2, . . . , sr}—for example, a set of heights measured
to the nearest inch. We shall conflate each individual with its measurement
and talk about a population of numbers, each one belonging to the set S.
The population average is the sum of all the measurements divided by the
size of the population. To express this, let Ni be the number of si’s in the
population, and let N be population size. Then, since the Ni measurements
of si contribute siNi to the total sum, the population average is

m =
1

N

r∑
i=1

siNi, (1.18)

The population variance is the average square distance from the mean m.
Similar reasoning implies it is given by

σ2 =
1

N

r∑
i=1

(si −m)2Ni. (1.19)

Now consider sampling this population random. This means that we draw
an individual from the population at random, so that each individual has the
same probability, namely, 1/N , to be drawn. Let the measurement labelling
the individual drawn be denoted X. Clearly, X is a random variable with
values in S and probability mass function,

pX(si) =
Ni

N
. (1.20)
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By comparing the definitions of the expectation and variance ofX to formulas
(1.18) and (1.19), we see that

E[X] = m and Var(X) = σ2. (1.21)

This may appear all very obvious, but the set-up is fundamental to sta-
tistical estimation and testing. The central problem of statistics is to make
inferences about and estimate the structure of an unkown population. We
could of course examine every member of the population and record it, but
this is typically impossible. Instead, we take a random sample, with re-
placement, of the population. That is we sample the population n times,
each sample being random in the sense just described, and each being inde-
pendent of the other. The sample is a sequence of independent, identically
distributed random variables X1, . . . , Xn, each with the distribution specified
by (1.20). Then we use the random sample to estimate the population. The
simplest, natural estimates are the sample mean, defined by

m̂n
4
=

1

n

n∑
i=1

Xi, (1.22)

and the sample variance, defined by

σ̂2 4=
1

n− 1

n∑
i=1

(Xi − m̂n)2. (1.23)

(The reason for dividing by n − 1 rather than n will be taken up in the
exercises.)

It is clear that the estimates should improve as n increases. This im-
provement and bounds on the accuracy can be obtained using Chebyshev’s
inequality (see the Appendix, II.10) Recall that Chebyshev’s inequality states
that for a random variable X

P (| X −mX |≥ a) ≤ Var(X)

a2
. (1.24)

We apply this to the sample mean. Note first that, using the linearity propery
of expectation—see (1.13) and Appendix, II.5—(1.21), and E[Xi] = m for
every i,

E[m̂n] =
1

n

n∑
i=1

E[Xi] =
1

n

n∑
i=1

m = m; (1.25)
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the mean of the sample mean equals the mean. A second calculation, using
(1.14), II.7 in the Appendix, and (1.21), yields

Var(m̂n) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2
Var

(
n∑
i=1

Xi

)

=
1

n2

n∑
i=1

Var(Xi) =
σ2

n
(1.26)

Now apply the Chebyshev inequality using these results. We get

P (|m̂n −m| ≥ a) ≤ σ2

na2
(1.27)

Since, for any positive a, this quantity tends to zero as n tends to infinity,
the accuracy of m̂n as an estimate of m increases.

Example 3. Consider a large box of red and white marbles. Let p be the
probability that a red marble results from a random draw. Suppose we take
a random sample of 200 draws, with replacement. Let p̂ be the fraction of
red marbles in our sample. Find a bound on P(|p̂− p| > 0.1).

To put this problem in the set-up of the previous discussion, label each
read marble by 1 and each white marble by 0. Then, p is the population
mean, which we were calling m, and the sample mean m̂200 is just p̂. Since a
random draw X, resulting in 1 for red and zero for white, is a Bernoulli r.v.,
the population variance is σ2 = p(1−p). Presumably, we are in the situation
where p is unknown so we really don’t know σ2. But since p is a number in
[0, 1], σ2 ≤ max{p(1− p) ; 0 ≤ p ≤ 1} = 0.25. Thus, from the bound (1.27),

P (|p̂− p| ≥ 0.1) ≤ .25

200(0.1)2
= 0.125.

(More refined techniques give much better estimates in this case.) ¦

The terminology, random sample, and the definition of sample mean
and variance, are applied more broadly than to sampling from finite, if
large, populations. Let pY denote a probability mass function on a set S

of real numbers and let mY

(
=
∑
s∈S

spY (s)

)
denote its mean, and vari-

ance σ2

(
=
∑
s∈S

(s−mY )2pY (s)

)
. A random sample from pY is a sequence
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X1, X2, . . . , Xn of independent random variables, each having pY as its prob-
ability mass function. The calculation leading to (1.27) for the sample mean
goes through without change in this generalized setting. It is important
enough to record it here as a theorem.

Theorem 1 If X1, . . . , Xn is a random sample from pY ,

P (|m̂n −mY | ≥ a) ≤ σ2
Y

na2
(1.28)

Before leaving this subject, we briefly mention sampling without replace-
ment. In sampling with replacement, the sampled individual is returned to
the population before the next sampling. Thus there is a chance that an
individual will be selected more than once in a random sample. One may
also sample without replacement, so that once an individual is sampled it is
removed from the population, if not physically, at least in the sense that it
is not a candidate in further sampling. Computing ptobabilities for random
samples without replacement is more complicated because the samples are no
longer independent. What happens in the first sample changes the sampling
population and so changes the probabilities of future random draws. For
example, consider a box with two white and three red marbles. The chance
of drawing white in the second sample is certainly different in the cases that
a red is drawn first or a white is drawn first. However, if the population is
large and the size of the sample is small relative to the population size, then
each successive sample has only a small effect on the probabilities of future
draws. In this case, it is valid to approximate sampling without replacement
by sampling with replacement.

1.2.4 The Law of Large Numbers

The Law of Large Numbers is a basic result that goes to the heart of the fre-
quency interpretation of probability. It concerns what happens to the sample
mean of a random sample from a probability distribution as the number n
of samples increases. We have already quantified how the sample mean be-
comes a more and more accurate estimate of the true mean in Theorem 1.
By applying limits as n→∞ in this result and observing that the right hand
side has limit 0 whenever a is positive, we obtain the following.
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Theorem 2 (Weak Law of Large Numbers) If X1, . . . , Xn is a random
sample from pY with a finite variance,

lim
n→∞

P (|m̂n −mY | ≥ a) = 0 for every positive a. (1.29)

This is called the Weak Law because it is a statement about limits of
probabilities. But the following theorem about probabilities of limits is also
true

Theorem 3 (Strong Law of Large Numbers) Let X1, X2, . . . be pair-wise
independent random variables, each with the sampe probability mass function
pY . Suppose mY is the mean of pY and is assumed finite. Then

P

(
lim
n→∞

1

n

n∑
1

Xi = mY

)
= 1. (1.30)

This is a rather general statement of the strong law. Its proof is quite
advanced and will not be given here.
Example: Frequency interpretation of probability. Consider a random
experiment. Let A be an event in the space of outcomes of the experiment.
Suppose, we run the experiment over and over. Define the frequency with
which A occurs in the first n trials by

p̂n
4
=

number of occurences of A in first n trials

n
.

This is the same empirical probability of A, estimated from the outcome of
the first n trials. Theorem 3 says that

lim
n→∞

p̂n = P(A) with probability 1.

In words, the probability of A is the long run frequency with which A occurs
in repeated independent trials. To see that this is true from Theorem 3,
define the random variables

Xi =
{

1, if A occurs in trial i;
0, otherwise.

Clearly, each Xi is a Bernoulli random variable with parameter p = P(Xi =
1) = P(A). So they all have the same probabilty mass function and the
mean, or expected value m is the expected value of this distribution, which
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we know from (1.10) is m = p = P(A). By the assumption of independent
trials, these random variables are independent. Also,

∑n
1 Xi is equal to the

number of times that A occurs in the first n trials. Hence,

p̂n =
1

n

n∑
i=1

Xi,

and so Theorem 3 implies

lim
n→∞

p̂n = lim
n→∞

1

n

n∑
i=1

Xi = m = P(A).


