Workshop 9, Math 311

1. Draw the graph of each of the following functions. For each case, determine whether the function is continous or discontinuous at $x=0$ and prove your claim.
a) $f(x)= \begin{cases}x^{2} & \text { if } x \neq 0\end{cases}$
b) $g(x)= \begin{cases}x^{2}-1 & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$
c) $k(x)= \begin{cases}\frac{x^{2}}{x(x+1)} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
d) $f(x)= \begin{cases}0 & \text { if } x \neq 1 / n \text { for all } n \in \mathbf{N} \\ 1 & \text { if } x=1 / n \text { for some } n \in \mathbf{N}\end{cases}$
2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $c \in \mathbf{R}$. We say that f is continuous at c from the left if for every sequence of real numbers $\left(x_{n}\right)$ such that $x_{n}<c$ for all n then

$$
\lim _{n \rightarrow \infty} x_{n}=c \quad \text { implies } \quad \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)
$$

a. Write the analogous definition for continuous at c from the right.
b. Show that f is continuous at c if and only if f is continuous at c from both the right and the left.
c. Use your result in b. to prove that the following function is continuous on all of \mathbf{R}.

$$
h(x)= \begin{cases}x^{2} \cos (x) & \text { if } x \geq 0 \\ \sin (x) & \text { if } x<0\end{cases}
$$

