Workshop 8, Math 311

1. In each of the cases below, f is a function whose domain is \mathbf{R} and whose range is the set of two points $\{0,1\}$. For each case, answer the following questions and prove your assertions:
i) For which $a \in \mathbf{R}$ does $\lim _{x \rightarrow a} f$ exist?
ii) If this limit exists, what is it?
a) $f(x)= \begin{cases}0 & \text { if } x \neq 1 / n \text { for all } n \in \mathbf{N} \\ 1 & \text { if } x=1 / n \text { for some } n \in \mathbf{N}\end{cases}$
b) $f(x)= \begin{cases}0 & \text { if } 0 \leq x \leq 1 \\ 1 & \text { all other } x\end{cases}$
c) $f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}$
d) $f(x)= \begin{cases}0 & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$
2. Determine the set of cluster points for each of the following sets. Which cluster points belong to the sets?
a. $A=\left\{x_{n} \quad: n \in \mathbf{N}\right\}$ where the sequence $\left(x_{n}\right)$ converges to some number c.
b. $M=I \cap \mathbf{Q}$ where $I=[0,1]$.
3. Show that $\lim _{x \rightarrow c} x^{n}=c^{n}$ for $c \in \mathbf{R}$ and $n \in \mathbf{N}$.
