Workshop 6, Math 311

1. Let $\left(x_{n}\right)$ be a sequence of real numbers. Let $x \in \mathbf{R}$ and $m>0$.
a. Show that the following two statements are equivalent:
(I) For every $\epsilon>0$, there exists a $K(\epsilon)$ such that for every $n>K(\epsilon)$ we have $\left|x_{n}-x\right|<\epsilon$.
(II) For every $\epsilon>0$, there exists a $K(\epsilon)$ such that for every $n>K(\epsilon)$ we have $\left|x_{n}-x\right|<m \epsilon$.
b. Use your result from a. to give a simpler proof of: the sum of two convergent sequences is convergent.
2. In this problem, we will calculate approximations to $\sqrt{3}$ using the method outlined in lecture.
a. Construct the following sequence: $s_{1}=1, s_{n+1}:=\left(s_{n}+3 / s_{n}\right) / 2$ for $n \geq 2$. Calculate the first ten terms of this sequence. Do you notice the sequence stabilizing?
b. How many terms do you need to calculate in order to approximate $\sqrt{3}$ with error less than 1/1000?
c. Repeat a. and b. for different values of $s_{1}\left(s_{1}=.1,1.7,10\right)$. What do you notice about the behavior of s_{n} in each case?
3. Let $\left(x_{n}\right)$ be a bounded sequence. For each $n \in \mathbf{N}$ let

$$
\begin{aligned}
s_{n} & :=\sup \left\{x_{k}: k \geq n\right\} \\
t_{n} & :=\inf \left\{x_{k}: k \geq n\right\}
\end{aligned}
$$

a. Calculate s_{n} and t_{n} for the following sequences:
(i) $x_{n}=(-1)^{n} / n$
(ii) $y_{n}= \begin{cases}2-1 / n, & n \text { even; } \\ -2+1 / n, & n \text { odd. }\end{cases}$
b. Are s_{n}, t_{n} monotone? bounded? convergent?
c. Prove that for any choice of bounded sequence x_{n}, the corresponding sequences s_{n} and t_{n} are monotone and convergent.
d. Prove: if $\lim \left(s_{n}\right)=\lim \left(t_{n}\right)$ then $\left(x_{n}\right)$ is convergent. Is the converse true? If so, prove it. If not, find a counterexample.

Note: $\lim \left(s_{n}\right)$ is called the limit superior of $\left(x_{n}\right) \cdot \lim \left(t_{n}\right)$ is called the limit inferior of $\left(x_{n}\right)$.

