Workshop 5, Math 311

1. Let $\left(a_{n}\right)$ be a sequence that satisfies:
$\dagger \quad$ For any $n \in \mathbf{N}$ there exists an integer m with $m>n$ such that $a_{m} \cdot a_{n}<0$.
a. Find examples of convergent and divergent sequences that satisfy \dagger.
b. Suppose that $\left(a_{n}\right)$ converges and that its limit is a. What can you say about a ? Prove your assertion.
2. Let $\left(b_{n}\right)$ be a sequence that satisfies:

* For any $n \in \mathbf{N}$ there exists an integer m with $m>n$ such that $b_{m}>b_{n}$.
a. Find examples of convergent and divergent sequences that satisfy $*$.
b. Does it follow from $*$ that $b_{m}>b_{n}$ for all $n, m \in \mathbf{N}$? If not, give an example. If so, prove your assertion.
c. Suppose that $\left(b_{n}\right)$ converges and that its limit is b. What is the relation of b to any of the elements b_{n} as a result of $*$?

3. a. By doing a few sample calculations, determine for which n the following inequality holds:

$$
0<2^{n} / n!<2(2 / 3)^{n-2}
$$

b. Prove your assertion.
c. Use b. to show that $\lim \left(2^{n} / n!\right)=0$.
d. Can you come up (and prove) a similar result for the sequence ($k^{n} / n!$) where $k \in \mathbf{R}$?

