Workshop 4, Math 311

1. Consider each of the following statements. If a statement is true, then prove it. If a statement is false, then give a counterexample and "fix" the statement so that it is true. In addition, prove the fixed statement.

- a. If $\lim_{n \to \infty} x_n = x$ and if $a < x_n < b$ for all n, then a < x < b.
- b. If $|x_n|$ converges to 0, then x_n converges to 0.

2. Consider the sequence whose nth term is

$$x_n = \frac{1}{n(n+1)(n+2)}.$$

- a. Using the definition of convergence, prove that $x_n \to 0$.
- b. For $\epsilon = 1, .1, .01, .001$, what is $K(\epsilon)$? (Choose $K(\epsilon) \in \mathbf{N}$).
- c. Is $K(\epsilon)$ the smallest number n that satisfies

$$\frac{1}{n(n+1)(n+2)} < \epsilon ?$$

If not, what is that smallest number?

d. When proving whether (x_n) converges, is it important that $K(\epsilon)$ be "as small as possible"? Why or why not?

3. Use the definition of convergence to establish the following limits.

a.
$$\lim(\frac{1}{\ln(n+1)}) = 0$$

b. $\lim(\frac{n^2-1}{n^2+1}) = 1$

4. Use the definition of convergence to establish that the following sequences x_n do not converge to the given number x.

a. $x_n = 1 + (-1)^n$ and x = 0b. $x_n = 1/n$ and x = 1/2