Workshop 2, Math 311

1. Consider the set of polynomials $R[x]$ with real coefficients with the usual addition and multiplication operations.
(a) Which of the rules (A1) - (D) hold for $R[x]$?

Now consider the following order relation on $R[x]$. We say that a polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

is positive if $a_{n}>0$.
(b) Show that $R[x]$ satisfies the Trichotomy Property.
(c) Is $R[x]$ Archimedean? (Hint: Compare constant polynomials with polynomials of degree 2, degree 3, etc. What are the order relations between them?)
2. Let S be a nonempty bounded subset of R and let $a \in R$.
(a) (warm-up problem) Prove that $\sup (a+S)=a+\sup S$.
(b) (more warm-up) Now let $a>0$. Let $a S:=\{a s \mid s \in S\}$. Prove that $\sup (a S)=a \sup S$.

Let A and B be nonempty bounded subsets of the positive real numbers. Define

$$
A \cdot B:=\{a b \mid a \in A b \in B\}
$$

(c) Show that $\sup (A \cdot B)=(\sup A)(\sup B)$.
(d) Does this equality still hold if we don't assume that A and B are positive?
3. Find examples of non-empty bounded sets S and T such that all of the following conditions hold:

$$
\sup S=1 \text { and } \sup T=1 \text { and } \inf S=0 \text { and } \inf T=1 \text { and } S \cap T=\emptyset .
$$

4. Let $V_{\epsilon}(a)$ and $V_{\delta}(b)$ be neighborhoods of the real numbers a and b.
(a) Find conditions on a, b, ϵ and δ so that $V_{\epsilon}(a) \cap V_{\delta}(b)=V_{\gamma}(c)$ for some $\gamma>0$ and some number c.
(b) Find conditions on a, b, ϵ and δ so that $V_{\epsilon}(a) \cup V_{\delta}(b)=V_{\gamma}(c)$ for some $\gamma>0$ and some number c.
(Hint: You already worked out the case $a=b$ in your homework.)
